Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

kd_trainer_test.py 7.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  1. import os
  2. import unittest
  3. from copy import deepcopy
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.kd_trainer.kd_trainer import KDTrainer
  6. import torch
  7. from super_gradients.training import models
  8. from super_gradients.training.losses.kd_losses import KDLogitsLoss
  9. from super_gradients.training.metrics import Accuracy
  10. from super_gradients.training.models.classification_models.resnet import ResNet50, ResNet18
  11. from super_gradients.training.models.kd_modules.kd_module import KDModule
  12. from super_gradients.training.utils.callbacks import PhaseCallback, PhaseContext, Phase
  13. from super_gradients.training.utils.module_utils import NormalizationAdapter
  14. from super_gradients.training.utils.utils import check_models_have_same_weights
  15. class PreTrainingNetCollector(PhaseCallback):
  16. def __init__(self):
  17. super(PreTrainingNetCollector, self).__init__(phase=Phase.PRE_TRAINING)
  18. self.net = None
  19. def __call__(self, context: PhaseContext):
  20. self.net = deepcopy(context.net)
  21. class PreTrainingEMANetCollector(PhaseCallback):
  22. def __init__(self):
  23. super(PreTrainingEMANetCollector, self).__init__(phase=Phase.PRE_TRAINING)
  24. self.net = None
  25. def __call__(self, context: PhaseContext):
  26. self.net = deepcopy(context.ema_model)
  27. class KDTrainerTest(unittest.TestCase):
  28. @classmethod
  29. def setUp(cls):
  30. cls.kd_train_params = {
  31. "max_epochs": 3,
  32. "lr_updates": [1],
  33. "lr_decay_factor": 0.1,
  34. "lr_mode": "step",
  35. "lr_warmup_epochs": 0,
  36. "initial_lr": 0.1,
  37. "loss": KDLogitsLoss(torch.nn.CrossEntropyLoss()),
  38. "optimizer": "SGD",
  39. "criterion_params": {},
  40. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  41. "train_metrics_list": [Accuracy()],
  42. "valid_metrics_list": [Accuracy()],
  43. "metric_to_watch": "Accuracy",
  44. "loss_logging_items_names": ["Loss", "Task Loss", "Distillation Loss"],
  45. "greater_metric_to_watch_is_better": True,
  46. "average_best_models": False,
  47. }
  48. def test_teacher_sg_module_methods(self):
  49. student = models.get("resnet18", arch_params={"num_classes": 1000})
  50. teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  51. kd_module = KDModule(arch_params={}, student=student, teacher=teacher)
  52. initial_param_groups = kd_module.initialize_param_groups(lr=0.1, training_params={})
  53. updated_param_groups = kd_module.update_param_groups(param_groups=initial_param_groups, lr=0.2, epoch=0, iter=0, training_params={}, total_batch=None)
  54. self.assertTrue(initial_param_groups[0]["lr"] == 0.2 == updated_param_groups[0]["lr"])
  55. def test_train_kd_module_external_models(self):
  56. sg_model = KDTrainer("test_train_kd_module_external_models")
  57. teacher_model = ResNet50(arch_params={}, num_classes=5)
  58. student_model = ResNet18(arch_params={}, num_classes=5)
  59. sg_model.train(
  60. training_params=self.kd_train_params,
  61. student=deepcopy(student_model),
  62. teacher=teacher_model,
  63. train_loader=classification_test_dataloader(),
  64. valid_loader=classification_test_dataloader(),
  65. )
  66. # TEACHER WEIGHT'S SHOULD REMAIN THE SAME
  67. self.assertTrue(check_models_have_same_weights(teacher_model, sg_model.net.module.teacher))
  68. # STUDENT WEIGHT'S SHOULD NOT REMAIN THE SAME
  69. self.assertFalse(check_models_have_same_weights(student_model, sg_model.net.module.student))
  70. def test_train_model_with_input_adapter(self):
  71. kd_trainer = KDTrainer("train_kd_module_with_with_input_adapter")
  72. student = models.get("resnet18", arch_params={"num_classes": 5})
  73. teacher = models.get("resnet50", arch_params={"num_classes": 5}, pretrained_weights="imagenet")
  74. adapter = NormalizationAdapter(
  75. mean_original=[0.485, 0.456, 0.406], std_original=[0.229, 0.224, 0.225], mean_required=[0.5, 0.5, 0.5], std_required=[0.5, 0.5, 0.5]
  76. )
  77. kd_arch_params = {"teacher_input_adapter": adapter}
  78. kd_trainer.train(
  79. training_params=self.kd_train_params,
  80. student=student,
  81. teacher=teacher,
  82. kd_arch_params=kd_arch_params,
  83. train_loader=classification_test_dataloader(),
  84. valid_loader=classification_test_dataloader(),
  85. )
  86. self.assertEqual(kd_trainer.net.module.teacher_input_adapter, adapter)
  87. def test_load_ckpt_best_for_student(self):
  88. kd_trainer = KDTrainer("test_load_ckpt_best")
  89. student = models.get("resnet18", arch_params={"num_classes": 5})
  90. teacher = models.get("resnet50", arch_params={"num_classes": 5}, pretrained_weights="imagenet")
  91. train_params = self.kd_train_params.copy()
  92. train_params["max_epochs"] = 1
  93. kd_trainer.train(
  94. training_params=train_params,
  95. student=student,
  96. teacher=teacher,
  97. train_loader=classification_test_dataloader(),
  98. valid_loader=classification_test_dataloader(),
  99. )
  100. best_student_ckpt = os.path.join(kd_trainer.checkpoints_dir_path, "ckpt_best.pth")
  101. student_reloaded = models.get("resnet18", arch_params={"num_classes": 5}, checkpoint_path=best_student_ckpt)
  102. self.assertTrue(check_models_have_same_weights(student_reloaded, kd_trainer.net.module.student))
  103. def test_load_ckpt_best_for_student_with_ema(self):
  104. kd_trainer = KDTrainer("test_load_ckpt_best")
  105. student = models.get("resnet18", arch_params={"num_classes": 5})
  106. teacher = models.get("resnet50", arch_params={"num_classes": 5}, pretrained_weights="imagenet")
  107. train_params = self.kd_train_params.copy()
  108. train_params["max_epochs"] = 1
  109. train_params["ema"] = True
  110. kd_trainer.train(
  111. training_params=train_params,
  112. student=student,
  113. teacher=teacher,
  114. train_loader=classification_test_dataloader(),
  115. valid_loader=classification_test_dataloader(),
  116. )
  117. best_student_ckpt = os.path.join(kd_trainer.checkpoints_dir_path, "ckpt_best.pth")
  118. student_reloaded = models.get("resnet18", arch_params={"num_classes": 5}, checkpoint_path=best_student_ckpt)
  119. self.assertTrue(check_models_have_same_weights(student_reloaded, kd_trainer.ema_model.ema.module.student))
  120. def test_resume_kd_training(self):
  121. kd_trainer = KDTrainer("test_resume_training_start")
  122. student = models.get("resnet18", arch_params={"num_classes": 5})
  123. teacher = models.get("resnet50", arch_params={"num_classes": 5}, pretrained_weights="imagenet")
  124. train_params = self.kd_train_params.copy()
  125. train_params["max_epochs"] = 1
  126. kd_trainer.train(
  127. training_params=train_params,
  128. student=student,
  129. teacher=teacher,
  130. train_loader=classification_test_dataloader(),
  131. valid_loader=classification_test_dataloader(),
  132. )
  133. latest_net = deepcopy(kd_trainer.net)
  134. kd_trainer = KDTrainer("test_resume_training_start")
  135. student = models.get("resnet18", arch_params={"num_classes": 5})
  136. teacher = models.get("resnet50", arch_params={"num_classes": 5}, pretrained_weights="imagenet")
  137. train_params["max_epochs"] = 2
  138. train_params["resume"] = True
  139. collector = PreTrainingNetCollector()
  140. train_params["phase_callbacks"] = [collector]
  141. kd_trainer.train(
  142. training_params=train_params,
  143. student=student,
  144. teacher=teacher,
  145. train_loader=classification_test_dataloader(),
  146. valid_loader=classification_test_dataloader(),
  147. )
  148. self.assertTrue(check_models_have_same_weights(collector.net, latest_net))
  149. if __name__ == "__main__":
  150. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...