1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
- import unittest
- from enum import Enum
- import re
- from super_gradients.training import models
- from super_gradients import Trainer
- from super_gradients.training.dataloaders.dataloaders import segmentation_test_dataloader, \
- classification_test_dataloader
- from super_gradients.training.utils.callbacks import ModelConversionCheckCallback
- from super_gradients.training.metrics import Accuracy, Top5, IoU
- from super_gradients.training.losses.stdc_loss import STDCLoss
- from super_gradients.training.losses.ddrnet_loss import DDRNetLoss
- from deci_lab_client.models import ModelMetadata, HardwareType, FrameworkType
- checkpoint_dir = "/Users/daniel/Documents/LALA"
- class Task(Enum):
- CLASSIFICATION = "classification"
- OBJECT_DETECTION = "object_detection"
- SEMANTIC_SEGMENTATION = "semantic_segmentation"
- def generate_model_metadata(architecture: str, task: Task):
- model_name = f"{architecture}_for_testing"
- return ModelMetadata(
- name=model_name,
- primary_batch_size=1,
- architecture=architecture.title(),
- framework=FrameworkType.PYTORCH,
- dl_task=task.value,
- input_dimensions=(3, 320, 320),
- primary_hardware=HardwareType.K80,
- dataset_name="ImageNet",
- description=f"{model_name} deci.ai Test",
- tags=["imagenet", model_name],
- )
- CLASSIFICATION = ["efficientnet_b0", "regnetY200", "regnetY400", "regnetY600", "regnetY800", "mobilenet_v3_large"]
- SEMANTIC_SEGMENTATION = ["ddrnet_23", "stdc1_seg", "stdc2_seg", "regseg48"]
- # TODO: ADD YOLOX ARCHITECTURES AND TESTS
- class ConversionCallbackTest(unittest.TestCase):
- def test_classification_architectures(self):
- for architecture in CLASSIFICATION:
- model_meta_data = generate_model_metadata(architecture=architecture, task=Task.CLASSIFICATION)
- phase_callbacks = [ModelConversionCheckCallback(model_meta_data=model_meta_data, opset_version=11)]
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": phase_callbacks,
- }
- trainer = Trainer(f"{architecture}_example",
- ckpt_root_dir=checkpoint_dir)
- model = models.get(architecture=architecture, arch_params={"use_aux_heads": True, "aux_head": True})
- try:
- trainer.train(model=model, training_params=train_params, train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- except Exception as e:
- self.fail(f"Model training didn't succeed due to {e}")
- else:
- self.assertTrue(True)
- def test_segmentation_architectures(self):
- def get_architecture_custom_config(architecture_name: str):
- if re.search(r"ddrnet", architecture_name):
- return {
- "loss": DDRNetLoss(num_pixels_exclude_ignored=False),
- }
- elif re.search(r"stdc", architecture_name):
- return {
- "loss": STDCLoss(num_classes=5),
- }
- elif re.search(r"regseg", architecture_name):
- return {
- "loss": "cross_entropy",
- }
- else:
- raise Exception("You tried to run a conversion test on an unknown architecture")
- for architecture in SEMANTIC_SEGMENTATION:
- model_meta_data = generate_model_metadata(architecture=architecture, task=Task.SEMANTIC_SEGMENTATION)
- trainer = Trainer(f"{architecture}_example",
- ckpt_root_dir=checkpoint_dir)
- model = models.get(model_name=architecture, arch_params={"use_aux_heads": True, "aux_head": True})
- phase_callbacks = [
- ModelConversionCheckCallback(model_meta_data=model_meta_data, opset_version=11, rtol=1, atol=1),
- ]
- train_params = {
- "max_epochs": 3,
- "initial_lr": 1e-2,
- "lr_mode": "poly",
- "ema": True, # unlike the paper (not specified in paper)
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 5e-4, "momentum": 0.9},
- "load_opt_params": False,
- "train_metrics_list": [IoU(5)],
- "valid_metrics_list": [IoU(5)],
- "metric_to_watch": "IoU",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": phase_callbacks,
- }
- custom_config = get_architecture_custom_config(architecture_name=architecture)
- train_params.update(custom_config)
- try:
- trainer.train(model=model, training_params=train_params, train_loader=segmentation_test_dataloader(image_size=512),
- valid_loader=segmentation_test_dataloader(image_size=512))
- except Exception as e:
- self.fail(f"Model training didn't succeed for {architecture} due to {e}")
- else:
- self.assertTrue(True)
|