Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

factories_test.py 1.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
  1. import unittest
  2. import torch
  3. from super_gradients import Trainer
  4. from super_gradients.training import models
  5. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  6. from super_gradients.training.metrics import Accuracy, Top5
  7. class FactoriesTest(unittest.TestCase):
  8. def test_training_with_factories(self):
  9. trainer = Trainer("test_train_with_factories", model_checkpoints_location='local')
  10. net = models.get("resnet18", num_classes=5)
  11. train_params = {"max_epochs": 2,
  12. "lr_updates": [1],
  13. "lr_decay_factor": 0.1,
  14. "lr_mode": "step",
  15. "lr_warmup_epochs": 0,
  16. "initial_lr": 0.1,
  17. "loss": "cross_entropy",
  18. "optimizer": "torch.optim.ASGD", # use an optimizer by factory
  19. "criterion_params": {},
  20. "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
  21. "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  22. "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  23. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  24. "greater_metric_to_watch_is_better": True}
  25. trainer.train(model=net, training_params=train_params,
  26. train_loader=classification_test_dataloader(),
  27. valid_loader=classification_test_dataloader())
  28. self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
  29. self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
  30. self.assertIsInstance(trainer.optimizer, torch.optim.ASGD)
  31. if __name__ == '__main__':
  32. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...