1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.losses.yolo_v5_loss — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.losses.yolo_v5_loss</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.losses.yolo_v5_loss</h1><div class="highlight"><pre>
- <span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Union</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
- <span class="kn">from</span> <span class="nn">torch.nn.modules.loss</span> <span class="kn">import</span> <span class="n">_Loss</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.losses.focal_loss</span> <span class="kn">import</span> <span class="n">FocalLoss</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">calculate_bbox_iou_elementwise</span><span class="p">,</span> <span class="n">Anchors</span>
- <div class="viewcode-block" id="YoLoV5DetectionLoss"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.YoLoV5DetectionLoss">[docs]</a><span class="k">class</span> <span class="nc">YoLoV5DetectionLoss</span><span class="p">(</span><span class="n">_Loss</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Calculate YOLO V5 loss:</span>
- <span class="sd"> L = L_objectivness + L_boxes + L_classification</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">anchors</span><span class="p">:</span> <span class="n">Anchors</span><span class="p">,</span>
- <span class="n">cls_pos_weight</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]]</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">obj_pos_weight</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
- <span class="n">obj_loss_gain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">box_loss_gain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.05</span><span class="p">,</span> <span class="n">cls_loss_gain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
- <span class="n">focal_loss_gamma</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
- <span class="n">cls_objectness_weights</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">],</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">anchor_threshold</span><span class="o">=</span><span class="mf">4.0</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param anchors: the anchors of the model (same anchors used for training)</span>
- <span class="sd"> :param cls_pos_weight: pos_weight for BCE in L_classification,</span>
- <span class="sd"> can be one value for all positives or a list of weights for each class</span>
- <span class="sd"> :param obj_pos_weight: pos_weight for BCE in L_objectivness</span>
- <span class="sd"> :param obj_loss_gain: coef for L_objectivness</span>
- <span class="sd"> :param box_loss_gain: coef for L_boxes</span>
- <span class="sd"> :param cls_loss_gain: coef for L_classification</span>
- <span class="sd"> :param focal_loss_gamma: gamma for a focal loss, 0 to train with a usual BCE</span>
- <span class="sd"> :param cls_objectness_weights: class-based weight for L_objectivness that will be applied in each cell that</span>
- <span class="sd"> has a GT assigned to it.</span>
- <span class="sd"> Note: default weight for objectness loss in each cell is 1.</span>
- <span class="sd"> :param anchor_threshold: ratio defining a size range of an appropriate anchor.</span>
- <span class="sd"> """</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">YoLoV5DetectionLoss</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls_pos_weight</span> <span class="o">=</span> <span class="n">cls_pos_weight</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">obj_pos_weight</span> <span class="o">=</span> <span class="n">obj_pos_weight</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">obj_loss_gain</span> <span class="o">=</span> <span class="n">obj_loss_gain</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">box_loss_gain</span> <span class="o">=</span> <span class="n">box_loss_gain</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls_loss_gain</span> <span class="o">=</span> <span class="n">cls_loss_gain</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">focal_loss_gamma</span> <span class="o">=</span> <span class="n">focal_loss_gamma</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">anchor_threshold</span> <span class="o">=</span> <span class="n">anchor_threshold</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">anchors</span> <span class="o">=</span> <span class="n">anchors</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls_obj_weights</span> <span class="o">=</span> <span class="n">cls_objectness_weights</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">cls_objectness_weights</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls_obj_weights</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">cls_objectness_weights</span><span class="p">))</span>
- <div class="viewcode-block" id="YoLoV5DetectionLoss.forward"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.YoLoV5DetectionLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_output</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model_output</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">model_output</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
- <span class="c1"># in test/eval mode the Yolo v5 model output a tuple where the second item is the raw predictions</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model_output</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">predictions</span> <span class="o">=</span> <span class="n">model_output</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">compute_loss</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span></div>
- <div class="viewcode-block" id="YoLoV5DetectionLoss.build_targets"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.YoLoV5DetectionLoss.build_targets">[docs]</a> <span class="k">def</span> <span class="nf">build_targets</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictions</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">targets</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> \
- <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">List</span><span class="p">[</span><span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]],</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]:</span>
- <span class="sd">"""</span>
- <span class="sd"> Assign targets to anchors to use in L_boxes & L_classification calculation:</span>
- <span class="sd"> * each target can be assigned to a few anchors,</span>
- <span class="sd"> all anchors that are within [1/self.anchor_threshold, self.anchor_threshold] times target size range</span>
- <span class="sd"> * each anchor can be assigned to a few targets</span>
- <span class="sd"> :param predictions: Yolo predictions</span>
- <span class="sd"> :param targets: ground truth targets</span>
- <span class="sd"> :return: each of 4 outputs contains one element for each Yolo output,</span>
- <span class="sd"> correspondences are raveled over the whole batch and all anchors:</span>
- <span class="sd"> * classes of the targets;</span>
- <span class="sd"> * boxes of the targets;</span>
- <span class="sd"> * image id in a batch, anchor id, grid y, grid x coordinates;</span>
- <span class="sd"> * anchor sizes.</span>
- <span class="sd"> All the above can be indexed in parallel to get the selected correspondences</span>
- <span class="sd"> """</span>
- <span class="n">num_anchors</span><span class="p">,</span> <span class="n">num_targets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">anchors</span><span class="o">.</span><span class="n">num_anchors</span><span class="p">,</span> <span class="n">targets</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">target_classes</span><span class="p">,</span> <span class="n">target_boxes</span><span class="p">,</span> <span class="n">indices</span><span class="p">,</span> <span class="n">anchors</span> <span class="o">=</span> <span class="p">[],</span> <span class="p">[],</span> <span class="p">[],</span> <span class="p">[]</span>
- <span class="n">gain</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">targets</span><span class="o">.</span><span class="n">device</span><span class="p">)</span> <span class="c1"># normalized to gridspace gain</span>
- <span class="n">anchor_indices</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">num_anchors</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">targets</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
- <span class="n">anchor_indices</span> <span class="o">=</span> <span class="n">anchor_indices</span><span class="o">.</span><span class="n">float</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">num_anchors</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_targets</span><span class="p">)</span>
- <span class="c1"># repeat all targets for each anchor and append a corresponding anchor index</span>
- <span class="n">targets</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">targets</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">num_anchors</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">anchor_indices</span><span class="p">[:,</span> <span class="p">:,</span> <span class="kc">None</span><span class="p">]),</span> <span class="mi">2</span><span class="p">)</span>
- <span class="n">bias</span> <span class="o">=</span> <span class="mf">0.5</span>
- <span class="n">off</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="c1"># j,k,l,m</span>
- <span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="n">targets</span><span class="o">.</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span> <span class="o">*</span> <span class="n">bias</span> <span class="c1"># offsets</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">anchors</span><span class="o">.</span><span class="n">detection_layers_num</span><span class="p">):</span>
- <span class="n">anch</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">anchors</span><span class="o">.</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="n">gain</span><span class="p">[</span><span class="mi">2</span><span class="p">:</span><span class="mi">6</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">predictions</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)[[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">]]</span> <span class="c1"># xyxy gain</span>
- <span class="c1"># Convert target coordinates from [0, 1] range to coordinates in [0, GridY], [0, GridX] ranges</span>
- <span class="n">t</span> <span class="o">=</span> <span class="n">targets</span> <span class="o">*</span> <span class="n">gain</span>
- <span class="k">if</span> <span class="n">num_targets</span><span class="p">:</span>
- <span class="c1"># Match: filter targets by anchor size ratio</span>
- <span class="n">r</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">4</span><span class="p">:</span><span class="mi">6</span><span class="p">]</span> <span class="o">/</span> <span class="n">anch</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="c1"># wh ratio</span>
- <span class="n">filtered_targets_ids</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="mf">1.</span> <span class="o">/</span> <span class="n">r</span><span class="p">)</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="mi">2</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">anchor_threshold</span> <span class="c1"># compare</span>
- <span class="n">t</span> <span class="o">=</span> <span class="n">t</span><span class="p">[</span><span class="n">filtered_targets_ids</span><span class="p">]</span>
- <span class="c1"># Find coordinates of targets on a grid</span>
- <span class="n">gxy</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="c1"># grid xy</span>
- <span class="n">gxi</span> <span class="o">=</span> <span class="n">gain</span><span class="p">[[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]]</span> <span class="o">-</span> <span class="n">gxy</span> <span class="c1"># inverse</span>
- <span class="n">j</span><span class="p">,</span> <span class="n">k</span> <span class="o">=</span> <span class="p">((</span><span class="n">gxy</span> <span class="o">%</span> <span class="mf">1.</span> <span class="o"><</span> <span class="n">bias</span><span class="p">)</span> <span class="o">&</span> <span class="p">(</span><span class="n">gxy</span> <span class="o">></span> <span class="mf">1.</span><span class="p">))</span><span class="o">.</span><span class="n">T</span>
- <span class="n">l</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="p">((</span><span class="n">gxi</span> <span class="o">%</span> <span class="mf">1.</span> <span class="o"><</span> <span class="n">bias</span><span class="p">)</span> <span class="o">&</span> <span class="p">(</span><span class="n">gxi</span> <span class="o">></span> <span class="mf">1.</span><span class="p">))</span><span class="o">.</span><span class="n">T</span>
- <span class="n">j</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">((</span><span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">j</span><span class="p">),</span> <span class="n">j</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span> <span class="n">m</span><span class="p">))</span>
- <span class="n">t</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">repeat</span><span class="p">((</span><span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))[</span><span class="n">j</span><span class="p">]</span>
- <span class="n">offsets</span> <span class="o">=</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">gxy</span><span class="p">)[</span><span class="kc">None</span><span class="p">]</span> <span class="o">+</span> <span class="n">off</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">])[</span><span class="n">j</span><span class="p">]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">t</span> <span class="o">=</span> <span class="n">targets</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">offsets</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="c1"># Define</span>
- <span class="n">b</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">long</span><span class="p">()</span><span class="o">.</span><span class="n">T</span> <span class="c1"># image, class</span>
- <span class="n">gxy</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="c1"># grid xy</span>
- <span class="n">gwh</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="mi">4</span><span class="p">:</span><span class="mi">6</span><span class="p">]</span> <span class="c1"># grid wh</span>
- <span class="n">gij</span> <span class="o">=</span> <span class="p">(</span><span class="n">gxy</span> <span class="o">-</span> <span class="n">offsets</span><span class="p">)</span><span class="o">.</span><span class="n">long</span><span class="p">()</span>
- <span class="n">gi</span><span class="p">,</span> <span class="n">gj</span> <span class="o">=</span> <span class="n">gij</span><span class="o">.</span><span class="n">T</span> <span class="c1"># grid xy indices</span>
- <span class="c1"># prevent coordinates from going out of bounds</span>
- <span class="n">gi</span><span class="p">,</span> <span class="n">gj</span> <span class="o">=</span> <span class="n">gi</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">gain</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">),</span> <span class="n">gj</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">gain</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
- <span class="c1"># Append</span>
- <span class="n">a</span> <span class="o">=</span> <span class="n">t</span><span class="p">[:,</span> <span class="mi">6</span><span class="p">]</span><span class="o">.</span><span class="n">long</span><span class="p">()</span> <span class="c1"># anchor indices</span>
- <span class="n">indices</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">b</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">gj</span><span class="p">,</span> <span class="n">gi</span><span class="p">))</span> <span class="c1"># image, anchor, grid indices</span>
- <span class="n">target_boxes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">gxy</span> <span class="o">-</span> <span class="n">gij</span><span class="p">,</span> <span class="n">gwh</span><span class="p">),</span> <span class="mi">1</span><span class="p">))</span> <span class="c1"># box</span>
- <span class="n">anchors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">anch</span><span class="p">[</span><span class="n">a</span><span class="p">])</span> <span class="c1"># anchors</span>
- <span class="n">target_classes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">c</span><span class="p">)</span> <span class="c1"># class</span>
- <span class="k">return</span> <span class="n">target_classes</span><span class="p">,</span> <span class="n">target_boxes</span><span class="p">,</span> <span class="n">indices</span><span class="p">,</span> <span class="n">anchors</span></div>
- <div class="viewcode-block" id="YoLoV5DetectionLoss.compute_loss"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.YoLoV5DetectionLoss.compute_loss">[docs]</a> <span class="k">def</span> <span class="nf">compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictions</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">targets</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">giou_loss_ratio</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">)</span> \
- <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span>
- <span class="sd">"""</span>
- <span class="sd"> L = L_objectivness + L_boxes + L_classification</span>
- <span class="sd"> where:</span>
- <span class="sd"> * L_boxes and L_classification are calculated only between anchors and targets that suit them;</span>
- <span class="sd"> * L_objectivness is calculated on all anchors.</span>
- <span class="sd"> L_classification:</span>
- <span class="sd"> for anchors that have suitable ground truths in their grid locations add BCEs</span>
- <span class="sd"> to force max probability for each GT class in a multi-label way</span>
- <span class="sd"> Coef: self.cls_loss_gain</span>
- <span class="sd"> L_boxes:</span>
- <span class="sd"> for anchors that have suitable ground truths in their grid locations</span>
- <span class="sd"> add (1 - IoU), IoU between a predicted box and each GT box, force maximum IoU</span>
- <span class="sd"> Coef: self.box_loss_gain</span>
- <span class="sd"> L_objectness:</span>
- <span class="sd"> for each anchor add BCE to force a prediction of (1 - giou_loss_ratio) + giou_loss_ratio * IoU,</span>
- <span class="sd"> IoU between a predicted box and random GT in it</span>
- <span class="sd"> Coef: self.obj_loss_gain, loss from each YOLO grid is additionally multiplied by balance = [4.0, 1.0, 0.4]</span>
- <span class="sd"> to balance different contributions coming from different numbers of grid cells</span>
- <span class="sd"> :param predictions: output from all Yolo levels, each of shape</span>
- <span class="sd"> [Batch x Num_Anchors x GridSizeY x GridSizeX x (4 + 1 + Num_classes)]</span>
- <span class="sd"> :param targets: [Num_targets x (4 + 2)], values on dim 1 are: image id in a batch, class, box x y w h</span>
- <span class="sd"> :param giou_loss_ratio: a coef in L_objectness defining what should be predicted as objecness</span>
- <span class="sd"> in a call with a target: can be a value in [IoU, 1] range</span>
- <span class="sd"> :return: loss, all losses separately in a detached tensor</span>
- <span class="sd"> """</span>
- <span class="n">device</span> <span class="o">=</span> <span class="n">targets</span><span class="o">.</span><span class="n">device</span>
- <span class="n">loss_classification</span><span class="p">,</span> <span class="n">loss_boxes</span><span class="p">,</span> <span class="n">loss_objectivness</span> <span class="o">=</span> \
- <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
- <span class="n">target_classes</span><span class="p">,</span> <span class="n">target_boxes</span><span class="p">,</span> <span class="n">indices</span><span class="p">,</span> <span class="n">anchors</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_targets</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span> <span class="c1"># targets</span>
- <span class="c1"># Define criteria</span>
- <span class="n">BCEcls</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">(</span><span class="n">pos_weight</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">cls_pos_weight</span><span class="p">]))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
- <span class="n">BCEobj</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">(</span><span class="n">pos_weight</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">obj_pos_weight</span><span class="p">]),</span> <span class="n">reduction</span><span class="o">=</span><span class="s1">'none'</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
- <span class="c1"># Focal loss</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">focal_loss_gamma</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">BCEcls</span><span class="p">,</span> <span class="n">BCEobj</span> <span class="o">=</span> <span class="n">FocalLoss</span><span class="p">(</span><span class="n">BCEcls</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">focal_loss_gamma</span><span class="p">),</span> <span class="n">FocalLoss</span><span class="p">(</span><span class="n">BCEobj</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">focal_loss_gamma</span><span class="p">)</span>
- <span class="c1"># Losses</span>
- <span class="n">num_targets</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="n">num_predictions</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
- <span class="n">balance</span> <span class="o">=</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">]</span> <span class="k">if</span> <span class="n">num_predictions</span> <span class="o">==</span> <span class="mi">3</span> <span class="k">else</span> <span class="p">[</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]</span> <span class="c1"># P3-5 or P3-6</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">prediction</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">predictions</span><span class="p">):</span> <span class="c1"># layer index, layer predictions</span>
- <span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span> <span class="o">=</span> <span class="n">indices</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="n">target_obj</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
- <span class="n">weight_obj</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
- <span class="n">n</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># number of targets</span>
- <span class="k">if</span> <span class="n">n</span><span class="p">:</span>
- <span class="n">num_targets</span> <span class="o">+=</span> <span class="n">n</span> <span class="c1"># cumulative targets</span>
- <span class="n">ps</span> <span class="o">=</span> <span class="n">prediction</span><span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span><span class="p">]</span> <span class="c1"># prediction subset corresponding to targets</span>
- <span class="c1"># Boxes loss</span>
- <span class="n">pxy</span> <span class="o">=</span> <span class="n">ps</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="o">*</span> <span class="mf">2.</span> <span class="o">-</span> <span class="mf">0.5</span>
- <span class="n">pwh</span> <span class="o">=</span> <span class="p">(</span><span class="n">ps</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="o">*</span> <span class="mi">2</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="n">pbox</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">pxy</span><span class="p">,</span> <span class="n">pwh</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span> <span class="c1"># predicted box</span>
- <span class="n">iou</span> <span class="o">=</span> <span class="n">calculate_bbox_iou_elementwise</span><span class="p">(</span><span class="n">pbox</span><span class="o">.</span><span class="n">T</span><span class="p">,</span> <span class="n">target_boxes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">x1y1x2y2</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">CIoU</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">loss_boxes</span> <span class="o">+=</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">iou</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> <span class="c1"># iou loss</span>
- <span class="c1"># Objectness loss target</span>
- <span class="n">target_obj</span><span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span><span class="p">]</span> <span class="o">=</span> \
- <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">giou_loss_ratio</span><span class="p">)</span> <span class="o">+</span> <span class="n">giou_loss_ratio</span> <span class="o">*</span> <span class="n">iou</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">target_obj</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
- <span class="c1"># Weights for weighted objectness</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cls_obj_weights</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="c1"># NOTE: for grid cells that have a few ground truths with different classes assigned to them</span>
- <span class="c1"># objectness weight will be picked randomly from one of these classes</span>
- <span class="n">weight_obj</span><span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cls_obj_weights</span><span class="p">[</span><span class="n">target_classes</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
- <span class="c1"># Classification loss</span>
- <span class="k">if</span> <span class="n">ps</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="mi">6</span><span class="p">:</span> <span class="c1"># cls loss (only if multiple classes)</span>
- <span class="n">t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">full_like</span><span class="p">(</span><span class="n">ps</span><span class="p">[:,</span> <span class="mi">5</span><span class="p">:],</span> <span class="mi">0</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span> <span class="c1"># targets</span>
- <span class="n">t</span><span class="p">[</span><span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">),</span> <span class="n">target_classes</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span> <span class="o">=</span> <span class="mi">1</span>
- <span class="n">loss_classification</span> <span class="o">+=</span> <span class="n">BCEcls</span><span class="p">(</span><span class="n">ps</span><span class="p">[:,</span> <span class="mi">5</span><span class="p">:],</span> <span class="n">t</span><span class="p">)</span> <span class="c1"># BCE</span>
- <span class="c1"># Objectness loss</span>
- <span class="n">loss_obj_cur_head</span> <span class="o">=</span> <span class="n">BCEobj</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">target_obj</span><span class="p">)</span>
- <span class="n">loss_obj_cur_head</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">loss_obj_cur_head</span> <span class="o">*</span> <span class="n">weight_obj</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">weight_obj</span><span class="p">))</span>
- <span class="n">loss_objectivness</span> <span class="o">+=</span> <span class="n">loss_obj_cur_head</span> <span class="o">*</span> <span class="n">balance</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="c1"># obj loss</span>
- <span class="n">batch_size</span> <span class="o">=</span> <span class="n">prediction</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># batch size</span>
- <span class="n">loss</span> <span class="o">=</span> <span class="n">loss_boxes</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">box_loss_gain</span> <span class="o">+</span> <span class="n">loss_objectivness</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">obj_loss_gain</span> <span class="o">+</span> <span class="n">loss_classification</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">cls_loss_gain</span>
- <span class="c1"># IMPORTANT: box, obj and cls loss are logged scaled by gain in ultralytics</span>
- <span class="c1"># and are logged unscaled in our codebase</span>
- <span class="k">return</span> <span class="n">loss</span> <span class="o">*</span> <span class="n">batch_size</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">loss_boxes</span><span class="p">,</span> <span class="n">loss_objectivness</span><span class="p">,</span> <span class="n">loss_classification</span><span class="p">,</span> <span class="n">loss</span><span class="p">))</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span></div></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|