Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

vit_unit_test.py 1.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
  1. import unittest
  2. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  3. from super_gradients import Trainer
  4. from super_gradients.training.metrics import Accuracy, Top5
  5. from super_gradients.training import models
  6. class TestViT(unittest.TestCase):
  7. def setUp(self):
  8. self.arch_params = {"image_size": (224, 224), "patch_size": (16, 16), "num_classes": 10}
  9. self.train_params = {
  10. "max_epochs": 2,
  11. "lr_updates": [1],
  12. "lr_decay_factor": 0.1,
  13. "lr_mode": "step",
  14. "lr_warmup_epochs": 0,
  15. "initial_lr": 0.1,
  16. "loss": "cross_entropy",
  17. "optimizer": "SGD",
  18. "criterion_params": {},
  19. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  20. "train_metrics_list": [Accuracy(), Top5()],
  21. "valid_metrics_list": [Accuracy(), Top5()],
  22. "metric_to_watch": "Accuracy",
  23. }
  24. def test_train_vit(self):
  25. """
  26. Validate vit_base
  27. """
  28. trainer = Trainer("test_vit_base", device="cpu")
  29. model = models.get("vit_base", arch_params=self.arch_params, num_classes=5)
  30. trainer.train(
  31. model=model, training_params=self.train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader()
  32. )
  33. if __name__ == "__main__":
  34. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...