1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
- import unittest
- import numpy as np
- import torch
- from torch.optim import SGD
- from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR
- from torchmetrics import F1Score
- from super_gradients import Trainer
- from super_gradients.training import models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5, ToyTestClassificationMetric
- from super_gradients.training.utils.callbacks import LRSchedulerCallback, Phase
- class TrainWithInitializedObjectsTest(unittest.TestCase):
- """
- Unit test for training with initialized objects passed as parameters.
- """
- def test_train_with_external_criterion(self):
- trainer = Trainer("external_criterion_test")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get("resnet18", arch_params={"num_classes": 5})
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": torch.nn.CrossEntropyLoss(),
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- def test_train_with_external_optimizer(self):
- trainer = Trainer("external_optimizer_test")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get("resnet18", arch_params={"num_classes": 5})
- optimizer = SGD(params=model.parameters(), lr=0.1)
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": optimizer,
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- def test_train_with_external_scheduler(self):
- trainer = Trainer("external_scheduler_test")
- dataloader = classification_test_dataloader(batch_size=10)
- lr = 0.3
- model = models.get("resnet18", arch_params={"num_classes": 5})
- optimizer = SGD(params=model.parameters(), lr=lr)
- lr_scheduler = MultiStepLR(optimizer=optimizer, milestones=[1, 2], gamma=0.1)
- phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.TRAIN_EPOCH_END)]
- train_params = {
- "max_epochs": 2,
- "phase_callbacks": phase_callbacks,
- "lr_warmup_epochs": 0,
- "initial_lr": lr,
- "loss": "cross_entropy",
- "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertTrue(lr_scheduler.get_last_lr()[0] == lr * 0.1 * 0.1)
- def test_train_with_external_scheduler_class(self):
- trainer = Trainer("external_scheduler_test")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get("resnet18", arch_params={"num_classes": 5})
- optimizer = SGD # a class - not an instance
- train_params = {
- "max_epochs": 2,
- "lr_warmup_epochs": 0,
- "initial_lr": 0.3,
- "loss": "cross_entropy",
- "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- def test_train_with_reduce_on_plateau(self):
- trainer = Trainer("external_reduce_on_plateau_scheduler_test")
- dataloader = classification_test_dataloader(batch_size=10)
- lr = 0.3
- model = models.get("resnet18", arch_params={"num_classes": 5})
- optimizer = SGD(params=model.parameters(), lr=lr)
- lr_scheduler = ReduceLROnPlateau(optimizer=optimizer, patience=0)
- phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.VALIDATION_EPOCH_END, "ToyTestClassificationMetric")]
- train_params = {
- "max_epochs": 2,
- "phase_callbacks": phase_callbacks,
- "lr_warmup_epochs": 0,
- "initial_lr": lr,
- "loss": "cross_entropy",
- "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5(), ToyTestClassificationMetric()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertTrue(lr_scheduler._last_lr[0] == lr * 0.1)
- def test_train_with_external_metric(self):
- trainer = Trainer("external_metric_test")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get("resnet18", arch_params={"num_classes": 5})
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [F1Score()],
- "valid_metrics_list": [F1Score()],
- "metric_to_watch": "F1Score",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- def test_train_with_external_dataloaders(self):
- trainer = Trainer("external_data_loader_test")
- batch_size = 5
- trainset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
- valset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
- train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size)
- val_loader = torch.utils.data.DataLoader(valset, batch_size=batch_size)
- model = models.get("resnet18", num_classes=5)
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [F1Score()],
- "valid_metrics_list": [F1Score()],
- "metric_to_watch": "F1Score",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=train_loader, valid_loader=val_loader)
- if __name__ == "__main__":
- unittest.main()
|