Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

super_gradients.training.datasets.segmentation_datasets.html 67 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.datasets.segmentation_datasets package &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="_static/graphviz.css" type="text/css" />
  10. <!--[if lt IE 9]>
  11. <script src="_static/js/html5shiv.min.js"></script>
  12. <![endif]-->
  13. <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
  14. <script src="_static/jquery.js"></script>
  15. <script src="_static/underscore.js"></script>
  16. <script src="_static/doctools.js"></script>
  17. <script src="_static/js/theme.js"></script>
  18. <link rel="index" title="Index" href="genindex.html" />
  19. <link rel="search" title="Search" href="search.html" />
  20. </head>
  21. <body class="wy-body-for-nav">
  22. <div class="wy-grid-for-nav">
  23. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  24. <div class="wy-side-scroll">
  25. <div class="wy-side-nav-search" >
  26. <a href="index.html" class="icon icon-home"> SuperGradients
  27. </a>
  28. <div role="search">
  29. <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
  30. <input type="text" name="q" placeholder="Search docs" />
  31. <input type="hidden" name="check_keywords" value="yes" />
  32. <input type="hidden" name="area" value="default" />
  33. </form>
  34. </div>
  35. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  36. <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
  37. <ul>
  38. <li class="toctree-l1"><a class="reference internal" href="welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -&gt; Fill Survey</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="welcome.html#supergradients">SuperGradients</a></li>
  40. </ul>
  41. <p class="caption"><span class="caption-text">Technical Documentation</span></p>
  42. <ul>
  43. <li class="toctree-l1"><a class="reference internal" href="super_gradients.common.html">Common package</a></li>
  44. <li class="toctree-l1"><a class="reference internal" href="super_gradients.training.html">Training package</a></li>
  45. </ul>
  46. <p class="caption"><span class="caption-text">User Guide</span></p>
  47. <ul>
  48. <li class="toctree-l1"><a class="reference internal" href="user_guide.html">What is SuperGradients?</a></li>
  49. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
  50. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#installation">Installation</a></li>
  51. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
  52. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#training-parameters">Training Parameters</a></li>
  53. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
  54. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#dataset-parameters">Dataset Parameters</a></li>
  55. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#network-architectures">Network Architectures</a></li>
  56. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#pretrained-models">Pretrained Models</a></li>
  57. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
  58. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
  59. <li class="toctree-l1"><a class="reference internal" href="user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
  60. </ul>
  61. </div>
  62. </div>
  63. </nav>
  64. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  65. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  66. <a href="index.html">SuperGradients</a>
  67. </nav>
  68. <div class="wy-nav-content">
  69. <div class="rst-content">
  70. <div role="navigation" aria-label="Page navigation">
  71. <ul class="wy-breadcrumbs">
  72. <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
  73. <li>super_gradients.training.datasets.segmentation_datasets package</li>
  74. <li class="wy-breadcrumbs-aside">
  75. <a href="_sources/super_gradients.training.datasets.segmentation_datasets.rst.txt" rel="nofollow"> View page source</a>
  76. </li>
  77. </ul>
  78. <hr/>
  79. </div>
  80. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  81. <div itemprop="articleBody">
  82. <section id="super-gradients-training-datasets-segmentation-datasets-package">
  83. <h1>super_gradients.training.datasets.segmentation_datasets package<a class="headerlink" href="#super-gradients-training-datasets-segmentation-datasets-package" title="Permalink to this headline"></a></h1>
  84. <section id="submodules">
  85. <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
  86. </section>
  87. <section id="module-super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation">
  88. <span id="super-gradients-training-datasets-segmentation-datasets-cityscape-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation" title="Permalink to this headline"></a></h2>
  89. <dl class="py class">
  90. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset">
  91. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.</span></span><span class="sig-name descname"><span class="pre">CityscapesDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root_dir</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels_csv_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset" title="Permalink to this definition"></a></dt>
  92. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  93. <p>CityscapesDataset - Segmentation Data Set Class for Cityscapes Segmentation Data Set,
  94. main resolution of dataset: (2048 x 1024).
  95. Not all the original labels are used for training and evaluation, according to cityscape paper:
  96. “Classes that are too rare are excluded from our benchmark, leaving 19 classes for evaluation”.
  97. For more details about the dataset labels format see:
  98. <a class="reference external" href="https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py">https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py</a></p>
  99. <dl class="py method">
  100. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_loader">
  101. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_loader" title="Permalink to this definition"></a></dt>
  102. <dd><dl class="simple">
  103. <dt>Override target_loader function, load the labels mask image.</dt><dd><dl class="field-list simple">
  104. <dt class="field-odd">param label_path</dt>
  105. <dd class="field-odd"><p>Path to the label image.</p>
  106. </dd>
  107. <dt class="field-even">return</dt>
  108. <dd class="field-even"><p>The mask image created from the array, with converted class labels.</p>
  109. </dd>
  110. </dl>
  111. </dd>
  112. </dl>
  113. </dd></dl>
  114. <dl class="py method">
  115. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.get_train_ids_color_palette">
  116. <span class="sig-name descname"><span class="pre">get_train_ids_color_palette</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.get_train_ids_color_palette"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.get_train_ids_color_palette" title="Permalink to this definition"></a></dt>
  117. <dd></dd></dl>
  118. <dl class="py method">
  119. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_transform">
  120. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_transform" title="Permalink to this definition"></a></dt>
  121. <dd><p>target_transform - Transforms the sample image
  122. This function overrides the original function from SegmentationDataSet and changes target pixels with value
  123. 255 to value = CITYSCAPES_IGNORE_LABEL. This was done since current IoU metric from torchmetrics does not
  124. support such a high ignore label value (crashed on OOM)</p>
  125. <blockquote>
  126. <div><dl class="field-list simple">
  127. <dt class="field-odd">param target</dt>
  128. <dd class="field-odd"><p>The target mask to transform</p>
  129. </dd>
  130. <dt class="field-even">return</dt>
  131. <dd class="field-even"><p>The transformed target mask</p>
  132. </dd>
  133. </dl>
  134. </div></blockquote>
  135. </dd></dl>
  136. </dd></dl>
  137. </section>
  138. <section id="module-super_gradients.training.datasets.segmentation_datasets.coco_segmentation">
  139. <span id="super-gradients-training-datasets-segmentation-datasets-coco-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.coco_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.coco_segmentation" title="Permalink to this headline"></a></h2>
  140. <dl class="py exception">
  141. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.EmptyCoCoClassesSelectionException">
  142. <em class="property"><span class="pre">exception</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.coco_segmentation.</span></span><span class="sig-name descname"><span class="pre">EmptyCoCoClassesSelectionException</span></span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#EmptyCoCoClassesSelectionException"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.EmptyCoCoClassesSelectionException" title="Permalink to this definition"></a></dt>
  143. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Exception</span></code></p>
  144. </dd></dl>
  145. <dl class="py class">
  146. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet">
  147. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.coco_segmentation.</span></span><span class="sig-name descname"><span class="pre">CoCoSegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_classes_inclusion_tuples_list</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet" title="Permalink to this definition"></a></dt>
  148. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  149. <p>CoCoSegmentationDataSet - Segmentation Data Set Class for COCO 2017 Segmentation Data Set</p>
  150. <dl class="py method">
  151. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet.target_loader">
  152. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mask_metadata_tuple</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  153. <dd><dl class="field-list simple">
  154. <dt class="field-odd">Parameters</dt>
  155. <dd class="field-odd"><p><strong>mask_metadata_tuple</strong> – A tuple of (coco_image_id, original_image_height, original_image_width)</p>
  156. </dd>
  157. <dt class="field-even">Returns</dt>
  158. <dd class="field-even"><p>The mask image created from the array</p>
  159. </dd>
  160. </dl>
  161. </dd></dl>
  162. </dd></dl>
  163. </section>
  164. <section id="module-super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation">
  165. <span id="super-gradients-training-datasets-segmentation-datasets-pascal-aug-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation" title="Permalink to this headline"></a></h2>
  166. <dl class="py class">
  167. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet">
  168. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.</span></span><span class="sig-name descname"><span class="pre">PascalAUG2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  169. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  170. <p>PascalAUG2012SegmentationDataSet - Segmentation Data Set Class for Pascal AUG 2012 Data Set</p>
  171. <dl class="py method">
  172. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet.target_loader">
  173. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  174. <dd><dl class="field-list simple">
  175. <dt class="field-odd">Parameters</dt>
  176. <dd class="field-odd"><p><strong>target_path</strong> – The path to the target data</p>
  177. </dd>
  178. <dt class="field-even">Returns</dt>
  179. <dd class="field-even"><p>The loaded target</p>
  180. </dd>
  181. </dl>
  182. </dd></dl>
  183. </dd></dl>
  184. </section>
  185. <section id="module-super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation">
  186. <span id="super-gradients-training-datasets-segmentation-datasets-pascal-voc-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation" title="Permalink to this headline"></a></h2>
  187. <dl class="py class">
  188. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet">
  189. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.</span></span><span class="sig-name descname"><span class="pre">PascalVOC2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  190. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  191. <p>PascalVOC2012SegmentationDataSet - Segmentation Data Set Class for Pascal VOC 2012 Data Set</p>
  192. <dl class="py method">
  193. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet.decode_segmentation_mask">
  194. <span class="sig-name descname"><span class="pre">decode_segmentation_mask</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_mask</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet.decode_segmentation_mask"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet.decode_segmentation_mask" title="Permalink to this definition"></a></dt>
  195. <dd><dl class="simple">
  196. <dt>decode_segmentation_mask - Decodes the colors for the Segmentation Mask</dt><dd><dl class="field-list simple">
  197. <dt class="field-odd">param</dt>
  198. <dd class="field-odd"><p>label_mask: an (M,N) array of integer values denoting
  199. the class label at each spatial location.</p>
  200. </dd>
  201. </dl>
  202. </dd>
  203. </dl>
  204. <dl class="field-list simple">
  205. <dt class="field-odd">Returns</dt>
  206. <dd class="field-odd"><p></p>
  207. </dd>
  208. </dl>
  209. </dd></dl>
  210. </dd></dl>
  211. </section>
  212. <section id="module-super_gradients.training.datasets.segmentation_datasets.segmentation_dataset">
  213. <span id="super-gradients-training-datasets-segmentation-datasets-segmentation-dataset-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.segmentation_dataset module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.segmentation_dataset" title="Permalink to this headline"></a></h2>
  214. <dl class="py class">
  215. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet">
  216. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.</span></span><span class="sig-name descname"><span class="pre">SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">samples_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">targets_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">608</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crop_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">16</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">augment</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset_hyper_params</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">dict</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_labels</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_images</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">collate_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_extension</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'.png'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchvision.transforms.transforms.Compose</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms_aug</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchvision.transforms.transforms.Compose</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet" title="Permalink to this definition"></a></dt>
  217. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  218. <dl class="py method">
  219. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_loader">
  220. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_loader" title="Permalink to this definition"></a></dt>
  221. <dd><dl class="simple">
  222. <dt>sample_loader - Loads a dataset image from path using PIL</dt><dd><dl class="field-list simple">
  223. <dt class="field-odd">param sample_path</dt>
  224. <dd class="field-odd"><p>The path to the sample image</p>
  225. </dd>
  226. <dt class="field-even">return</dt>
  227. <dd class="field-even"><p>The loaded Image</p>
  228. </dd>
  229. </dl>
  230. </dd>
  231. </dl>
  232. </dd></dl>
  233. <dl class="py method">
  234. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_transform">
  235. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">image</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_transform" title="Permalink to this definition"></a></dt>
  236. <dd><p>sample_transform - Transforms the sample image</p>
  237. <blockquote>
  238. <div><dl class="field-list simple">
  239. <dt class="field-odd">param image</dt>
  240. <dd class="field-odd"><p>The input image to transform</p>
  241. </dd>
  242. <dt class="field-even">return</dt>
  243. <dd class="field-even"><p>The transformed image</p>
  244. </dd>
  245. </dl>
  246. </div></blockquote>
  247. </dd></dl>
  248. <dl class="py method">
  249. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_loader">
  250. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  251. <dd><dl class="field-list simple">
  252. <dt class="field-odd">Parameters</dt>
  253. <dd class="field-odd"><p><strong>target_path</strong> – The path to the sample image</p>
  254. </dd>
  255. <dt class="field-even">Returns</dt>
  256. <dd class="field-even"><p>The loaded Image</p>
  257. </dd>
  258. </dl>
  259. </dd></dl>
  260. <dl class="py method">
  261. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_transform">
  262. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_transform" title="Permalink to this definition"></a></dt>
  263. <dd><p>target_transform - Transforms the sample image</p>
  264. <blockquote>
  265. <div><dl class="field-list simple">
  266. <dt class="field-odd">param target</dt>
  267. <dd class="field-odd"><p>The target mask to transform</p>
  268. </dd>
  269. <dt class="field-even">return</dt>
  270. <dd class="field-even"><p>The transformed target mask</p>
  271. </dd>
  272. </dl>
  273. </div></blockquote>
  274. </dd></dl>
  275. </dd></dl>
  276. </section>
  277. <section id="module-super_gradients.training.datasets.segmentation_datasets">
  278. <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets" title="Permalink to this headline"></a></h2>
  279. <dl class="py class">
  280. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet">
  281. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">samples_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">targets_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">608</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crop_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">16</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">augment</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset_hyper_params</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">dict</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_labels</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_images</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">collate_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_extension</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'.png'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchvision.transforms.transforms.Compose</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms_aug</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchvision.transforms.transforms.Compose</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet" title="Permalink to this definition"></a></dt>
  282. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  283. <dl class="py method">
  284. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.sample_loader">
  285. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.sample_loader" title="Permalink to this definition"></a></dt>
  286. <dd><dl class="simple">
  287. <dt>sample_loader - Loads a dataset image from path using PIL</dt><dd><dl class="field-list simple">
  288. <dt class="field-odd">param sample_path</dt>
  289. <dd class="field-odd"><p>The path to the sample image</p>
  290. </dd>
  291. <dt class="field-even">return</dt>
  292. <dd class="field-even"><p>The loaded Image</p>
  293. </dd>
  294. </dl>
  295. </dd>
  296. </dl>
  297. </dd></dl>
  298. <dl class="py method">
  299. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.sample_transform">
  300. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">image</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.sample_transform" title="Permalink to this definition"></a></dt>
  301. <dd><p>sample_transform - Transforms the sample image</p>
  302. <blockquote>
  303. <div><dl class="field-list simple">
  304. <dt class="field-odd">param image</dt>
  305. <dd class="field-odd"><p>The input image to transform</p>
  306. </dd>
  307. <dt class="field-even">return</dt>
  308. <dd class="field-even"><p>The transformed image</p>
  309. </dd>
  310. </dl>
  311. </div></blockquote>
  312. </dd></dl>
  313. <dl class="py method">
  314. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.target_loader">
  315. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  316. <dd><dl class="field-list simple">
  317. <dt class="field-odd">Parameters</dt>
  318. <dd class="field-odd"><p><strong>target_path</strong> – The path to the sample image</p>
  319. </dd>
  320. <dt class="field-even">Returns</dt>
  321. <dd class="field-even"><p>The loaded Image</p>
  322. </dd>
  323. </dl>
  324. </dd></dl>
  325. <dl class="py method">
  326. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.target_transform">
  327. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SegmentationDataSet.target_transform" title="Permalink to this definition"></a></dt>
  328. <dd><p>target_transform - Transforms the sample image</p>
  329. <blockquote>
  330. <div><dl class="field-list simple">
  331. <dt class="field-odd">param target</dt>
  332. <dd class="field-odd"><p>The target mask to transform</p>
  333. </dd>
  334. <dt class="field-even">return</dt>
  335. <dd class="field-even"><p>The transformed target mask</p>
  336. </dd>
  337. </dl>
  338. </div></blockquote>
  339. </dd></dl>
  340. </dd></dl>
  341. <dl class="py class">
  342. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CoCoSegmentationDataSet">
  343. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">CoCoSegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_classes_inclusion_tuples_list</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CoCoSegmentationDataSet" title="Permalink to this definition"></a></dt>
  344. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  345. <p>CoCoSegmentationDataSet - Segmentation Data Set Class for COCO 2017 Segmentation Data Set</p>
  346. <dl class="py method">
  347. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CoCoSegmentationDataSet.target_loader">
  348. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mask_metadata_tuple</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CoCoSegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  349. <dd><dl class="field-list simple">
  350. <dt class="field-odd">Parameters</dt>
  351. <dd class="field-odd"><p><strong>mask_metadata_tuple</strong> – A tuple of (coco_image_id, original_image_height, original_image_width)</p>
  352. </dd>
  353. <dt class="field-even">Returns</dt>
  354. <dd class="field-even"><p>The mask image created from the array</p>
  355. </dd>
  356. </dl>
  357. </dd></dl>
  358. </dd></dl>
  359. <dl class="py class">
  360. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.PascalAUG2012SegmentationDataSet">
  361. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">PascalAUG2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.PascalAUG2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  362. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  363. <p>PascalAUG2012SegmentationDataSet - Segmentation Data Set Class for Pascal AUG 2012 Data Set</p>
  364. <dl class="py method">
  365. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.PascalAUG2012SegmentationDataSet.target_loader">
  366. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.PascalAUG2012SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  367. <dd><dl class="field-list simple">
  368. <dt class="field-odd">Parameters</dt>
  369. <dd class="field-odd"><p><strong>target_path</strong> – The path to the target data</p>
  370. </dd>
  371. <dt class="field-even">Returns</dt>
  372. <dd class="field-even"><p>The loaded target</p>
  373. </dd>
  374. </dl>
  375. </dd></dl>
  376. </dd></dl>
  377. <dl class="py class">
  378. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.PascalVOC2012SegmentationDataSet">
  379. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">PascalVOC2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.PascalVOC2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  380. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  381. <p>PascalVOC2012SegmentationDataSet - Segmentation Data Set Class for Pascal VOC 2012 Data Set</p>
  382. <dl class="py method">
  383. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.PascalVOC2012SegmentationDataSet.decode_segmentation_mask">
  384. <span class="sig-name descname"><span class="pre">decode_segmentation_mask</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_mask</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet.decode_segmentation_mask"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.PascalVOC2012SegmentationDataSet.decode_segmentation_mask" title="Permalink to this definition"></a></dt>
  385. <dd><dl class="simple">
  386. <dt>decode_segmentation_mask - Decodes the colors for the Segmentation Mask</dt><dd><dl class="field-list simple">
  387. <dt class="field-odd">param</dt>
  388. <dd class="field-odd"><p>label_mask: an (M,N) array of integer values denoting
  389. the class label at each spatial location.</p>
  390. </dd>
  391. </dl>
  392. </dd>
  393. </dl>
  394. <dl class="field-list simple">
  395. <dt class="field-odd">Returns</dt>
  396. <dd class="field-odd"><p></p>
  397. </dd>
  398. </dl>
  399. </dd></dl>
  400. </dd></dl>
  401. <dl class="py class">
  402. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CityscapesDataset">
  403. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">CityscapesDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root_dir</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels_csv_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CityscapesDataset" title="Permalink to this definition"></a></dt>
  404. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  405. <p>CityscapesDataset - Segmentation Data Set Class for Cityscapes Segmentation Data Set,
  406. main resolution of dataset: (2048 x 1024).
  407. Not all the original labels are used for training and evaluation, according to cityscape paper:
  408. “Classes that are too rare are excluded from our benchmark, leaving 19 classes for evaluation”.
  409. For more details about the dataset labels format see:
  410. <a class="reference external" href="https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py">https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py</a></p>
  411. <dl class="py method">
  412. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.target_loader">
  413. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shaniperl/opt/anaconda3/lib/python3.9/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.target_loader" title="Permalink to this definition"></a></dt>
  414. <dd><dl class="simple">
  415. <dt>Override target_loader function, load the labels mask image.</dt><dd><dl class="field-list simple">
  416. <dt class="field-odd">param label_path</dt>
  417. <dd class="field-odd"><p>Path to the label image.</p>
  418. </dd>
  419. <dt class="field-even">return</dt>
  420. <dd class="field-even"><p>The mask image created from the array, with converted class labels.</p>
  421. </dd>
  422. </dl>
  423. </dd>
  424. </dl>
  425. </dd></dl>
  426. <dl class="py method">
  427. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.get_train_ids_color_palette">
  428. <span class="sig-name descname"><span class="pre">get_train_ids_color_palette</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.get_train_ids_color_palette"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.get_train_ids_color_palette" title="Permalink to this definition"></a></dt>
  429. <dd></dd></dl>
  430. <dl class="py method">
  431. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.target_transform">
  432. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.CityscapesDataset.target_transform" title="Permalink to this definition"></a></dt>
  433. <dd><p>target_transform - Transforms the sample image
  434. This function overrides the original function from SegmentationDataSet and changes target pixels with value
  435. 255 to value = CITYSCAPES_IGNORE_LABEL. This was done since current IoU metric from torchmetrics does not
  436. support such a high ignore label value (crashed on OOM)</p>
  437. <blockquote>
  438. <div><dl class="field-list simple">
  439. <dt class="field-odd">param target</dt>
  440. <dd class="field-odd"><p>The target mask to transform</p>
  441. </dd>
  442. <dt class="field-even">return</dt>
  443. <dd class="field-even"><p>The transformed target mask</p>
  444. </dd>
  445. </dl>
  446. </div></blockquote>
  447. </dd></dl>
  448. </dd></dl>
  449. <dl class="py class">
  450. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SuperviselyPersonsDataset">
  451. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.</span></span><span class="sig-name descname"><span class="pre">SuperviselyPersonsDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root_dir</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/supervisely_persons_segmentation.html#SuperviselyPersonsDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SuperviselyPersonsDataset" title="Permalink to this definition"></a></dt>
  452. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  453. <p>SuperviselyPersonsDataset - Segmentation Data Set Class for Supervisely Persons Segmentation Data Set,
  454. main resolution of dataset: (600 x 800).
  455. This dataset is a subset of the original dataset (see below) and contains filtered samples
  456. For more details about the ORIGINAL dataset see: <a class="reference external" href="https://app.supervise.ly/ecosystem/projects/persons">https://app.supervise.ly/ecosystem/projects/persons</a>
  457. For more details about the FILTERED dataset see:
  458. <a class="reference external" href="https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/PP-HumanSeg">https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.3/contrib/PP-HumanSeg</a></p>
  459. <dl class="py attribute">
  460. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.SuperviselyPersonsDataset.CLASS_LABELS">
  461. <span class="sig-name descname"><span class="pre">CLASS_LABELS</span></span><em class="property"> <span class="pre">=</span> <span class="pre">{0:</span> <span class="pre">'background',</span> <span class="pre">1:</span> <span class="pre">'person'}</span></em><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.SuperviselyPersonsDataset.CLASS_LABELS" title="Permalink to this definition"></a></dt>
  462. <dd></dd></dl>
  463. </dd></dl>
  464. </section>
  465. </section>
  466. </div>
  467. </div>
  468. <footer>
  469. <hr/>
  470. <div role="contentinfo">
  471. <p>&#169; Copyright 2021, SuperGradients team.</p>
  472. </div>
  473. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  474. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  475. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  476. </footer>
  477. </div>
  478. </div>
  479. </section>
  480. </div>
  481. <script>
  482. jQuery(function () {
  483. SphinxRtdTheme.Navigation.enable(true);
  484. });
  485. </script>
  486. </body>
  487. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...