Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

segmentation_metrics.html 57 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.metrics.segmentation_metrics &mdash; SuperGradients 3.0.3 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
  10. <link rel="stylesheet" href="../../../../_static/custom.css" type="text/css" />
  11. <!--[if lt IE 9]>
  12. <script src="../../../../_static/js/html5shiv.min.js"></script>
  13. <![endif]-->
  14. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  15. <script src="../../../../_static/jquery.js"></script>
  16. <script src="../../../../_static/underscore.js"></script>
  17. <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
  18. <script src="../../../../_static/doctools.js"></script>
  19. <script src="../../../../_static/sphinx_highlight.js"></script>
  20. <script src="../../../../_static/js/theme.js"></script>
  21. <link rel="index" title="Index" href="../../../../genindex.html" />
  22. <link rel="search" title="Search" href="../../../../search.html" />
  23. </head>
  24. <body class="wy-body-for-nav">
  25. <div class="wy-grid-for-nav">
  26. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  27. <div class="wy-side-scroll">
  28. <div class="wy-side-nav-search" >
  29. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  30. </a>
  31. <div role="search">
  32. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  33. <input type="text" name="q" placeholder="Search docs" />
  34. <input type="hidden" name="check_keywords" value="yes" />
  35. <input type="hidden" name="area" value="default" />
  36. </form>
  37. </div>
  38. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  39. <p class="caption" role="heading"><span class="caption-text">Welcome To SuperGradients</span></p>
  40. <ul>
  41. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Version 3 is out! Notebooks have been updated!</a></li>
  42. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#build-with-supergradients">Build with SuperGradients</a></li>
  43. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#quick-installation">Quick Installation</a></li>
  44. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#what-s-new">What’s New</a></li>
  45. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#coming-soon">Coming soon</a></li>
  46. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#table-of-content">Table of Content</a></li>
  47. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#getting-started">Getting Started</a></li>
  48. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#advanced-features">Advanced Features</a></li>
  49. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#installation-methods">Installation Methods</a></li>
  50. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#implemented-model-architectures">Implemented Model Architectures</a></li>
  51. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#documentation">Documentation</a></li>
  52. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#contributing">Contributing</a></li>
  53. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#citation">Citation</a></li>
  54. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#community">Community</a></li>
  55. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#license">License</a></li>
  56. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#deci-platform">Deci Platform</a></li>
  57. </ul>
  58. <p class="caption" role="heading"><span class="caption-text">Technical Documentation</span></p>
  59. <ul>
  60. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
  61. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
  62. </ul>
  63. </div>
  64. </div>
  65. </nav>
  66. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  67. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  68. <a href="../../../../index.html">SuperGradients</a>
  69. </nav>
  70. <div class="wy-nav-content">
  71. <div class="rst-content">
  72. <div role="navigation" aria-label="Page navigation">
  73. <ul class="wy-breadcrumbs">
  74. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  75. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  76. <li>super_gradients.training.metrics.segmentation_metrics</li>
  77. <li class="wy-breadcrumbs-aside">
  78. </li>
  79. </ul>
  80. <hr/>
  81. </div>
  82. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  83. <div itemprop="articleBody">
  84. <h1>Source code for super_gradients.training.metrics.segmentation_metrics</h1><div class="highlight"><pre>
  85. <span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  86. <span class="kn">import</span> <span class="nn">torch</span>
  87. <span class="kn">import</span> <span class="nn">torchmetrics</span>
  88. <span class="kn">from</span> <span class="nn">torchmetrics</span> <span class="kn">import</span> <span class="n">Metric</span>
  89. <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span>
  90. <span class="kn">from</span> <span class="nn">torchmetrics.utilities.distributed</span> <span class="kn">import</span> <span class="n">reduce</span>
  91. <span class="kn">from</span> <span class="nn">abc</span> <span class="kn">import</span> <span class="n">ABC</span><span class="p">,</span> <span class="n">abstractmethod</span>
  92. <span class="k">def</span> <span class="nf">batch_pix_accuracy</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
  93. <span class="sd">&quot;&quot;&quot;Batch Pixel Accuracy</span>
  94. <span class="sd"> Args:</span>
  95. <span class="sd"> predict: input 4D tensor</span>
  96. <span class="sd"> target: label 3D tensor</span>
  97. <span class="sd"> &quot;&quot;&quot;</span>
  98. <span class="n">_</span><span class="p">,</span> <span class="n">predict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  99. <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
  100. <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
  101. <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">target</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">)</span>
  102. <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">))</span>
  103. <span class="k">assert</span> <span class="n">pixel_correct</span> <span class="o">&lt;=</span> <span class="n">pixel_labeled</span><span class="p">,</span> <span class="s2">&quot;Correct area should be smaller than Labeled&quot;</span>
  104. <span class="k">return</span> <span class="n">pixel_correct</span><span class="p">,</span> <span class="n">pixel_labeled</span>
  105. <span class="k">def</span> <span class="nf">batch_intersection_union</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">nclass</span><span class="p">):</span>
  106. <span class="sd">&quot;&quot;&quot;Batch Intersection of Union</span>
  107. <span class="sd"> Args:</span>
  108. <span class="sd"> predict: input 4D tensor</span>
  109. <span class="sd"> target: label 3D tensor</span>
  110. <span class="sd"> nclass: number of categories (int)</span>
  111. <span class="sd"> &quot;&quot;&quot;</span>
  112. <span class="n">_</span><span class="p">,</span> <span class="n">predict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  113. <span class="n">mini</span> <span class="o">=</span> <span class="mi">1</span>
  114. <span class="n">maxi</span> <span class="o">=</span> <span class="n">nclass</span>
  115. <span class="n">nbins</span> <span class="o">=</span> <span class="n">nclass</span>
  116. <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
  117. <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
  118. <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">predict</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
  119. <span class="n">intersection</span> <span class="o">=</span> <span class="n">predict</span> <span class="o">*</span> <span class="p">(</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span>
  120. <span class="c1"># areas of intersection and union</span>
  121. <span class="n">area_inter</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">intersection</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
  122. <span class="n">area_pred</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
  123. <span class="n">area_lab</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
  124. <span class="n">area_union</span> <span class="o">=</span> <span class="n">area_pred</span> <span class="o">+</span> <span class="n">area_lab</span> <span class="o">-</span> <span class="n">area_inter</span>
  125. <span class="k">assert</span> <span class="p">(</span><span class="n">area_inter</span> <span class="o">&lt;=</span> <span class="n">area_union</span><span class="p">)</span><span class="o">.</span><span class="n">all</span><span class="p">(),</span> <span class="s2">&quot;Intersection area should be smaller than Union area&quot;</span>
  126. <span class="k">return</span> <span class="n">area_inter</span><span class="p">,</span> <span class="n">area_union</span>
  127. <span class="c1"># ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py</span>
  128. <span class="k">def</span> <span class="nf">pixel_accuracy</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">im_lab</span><span class="p">):</span>
  129. <span class="n">im_pred</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_pred</span><span class="p">)</span>
  130. <span class="n">im_lab</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_lab</span><span class="p">)</span>
  131. <span class="c1"># Remove classes from unlabeled pixels in gt image.</span>
  132. <span class="c1"># We should not penalize detections in unlabeled portions of the image.</span>
  133. <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">im_lab</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">)</span>
  134. <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">im_pred</span> <span class="o">==</span> <span class="n">im_lab</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_lab</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">))</span>
  135. <span class="c1"># pixel_accuracy = 1.0 * pixel_correct / pixel_labeled</span>
  136. <span class="k">return</span> <span class="n">pixel_correct</span><span class="p">,</span> <span class="n">pixel_labeled</span>
  137. <span class="k">def</span> <span class="nf">_dice_from_confmat</span><span class="p">(</span>
  138. <span class="n">confmat</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
  139. <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  140. <span class="n">ignore_index</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  141. <span class="n">absent_score</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
  142. <span class="n">reduction</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;elementwise_mean&quot;</span><span class="p">,</span>
  143. <span class="p">)</span> <span class="o">-&gt;</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">:</span>
  144. <span class="sd">&quot;&quot;&quot;Computes Dice coefficient from confusion matrix.</span>
  145. <span class="sd"> Args:</span>
  146. <span class="sd"> confmat: Confusion matrix without normalization</span>
  147. <span class="sd"> num_classes: Number of classes for a given prediction and target tensor</span>
  148. <span class="sd"> ignore_index: optional int specifying a target class to ignore. If given, this class index does not contribute</span>
  149. <span class="sd"> to the returned score, regardless of reduction method.</span>
  150. <span class="sd"> absent_score: score to use for an individual class, if no instances of the class index were present in `pred`</span>
  151. <span class="sd"> AND no instances of the class index were present in `target`.</span>
  152. <span class="sd"> reduction: a method to reduce metric score over labels.</span>
  153. <span class="sd"> - ``&#39;elementwise_mean&#39;``: takes the mean (default)</span>
  154. <span class="sd"> - ``&#39;sum&#39;``: takes the sum</span>
  155. <span class="sd"> - ``&#39;none&#39;``: no reduction will be applied</span>
  156. <span class="sd"> &quot;&quot;&quot;</span>
  157. <span class="c1"># Remove the ignored class index from the scores.</span>
  158. <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="mi">0</span> <span class="o">&lt;=</span> <span class="n">ignore_index</span> <span class="o">&lt;</span> <span class="n">num_classes</span><span class="p">:</span>
  159. <span class="n">confmat</span><span class="p">[</span><span class="n">ignore_index</span><span class="p">]</span> <span class="o">=</span> <span class="mf">0.0</span>
  160. <span class="n">intersection</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">confmat</span><span class="p">)</span>
  161. <span class="n">denominator</span> <span class="o">=</span> <span class="n">confmat</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="n">confmat</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
  162. <span class="c1"># If this class is absent in both target AND pred (union == 0), then use the absent_score for this class.</span>
  163. <span class="n">scores</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">intersection</span><span class="o">.</span><span class="n">float</span><span class="p">()</span> <span class="o">/</span> <span class="n">denominator</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
  164. <span class="n">scores</span><span class="p">[</span><span class="n">denominator</span> <span class="o">==</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">absent_score</span>
  165. <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="mi">0</span> <span class="o">&lt;=</span> <span class="n">ignore_index</span> <span class="o">&lt;</span> <span class="n">num_classes</span><span class="p">:</span>
  166. <span class="n">scores</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span>
  167. <span class="p">[</span>
  168. <span class="n">scores</span><span class="p">[:</span><span class="n">ignore_index</span><span class="p">],</span>
  169. <span class="n">scores</span><span class="p">[</span><span class="n">ignore_index</span> <span class="o">+</span> <span class="mi">1</span> <span class="p">:],</span>
  170. <span class="p">]</span>
  171. <span class="p">)</span>
  172. <span class="k">return</span> <span class="n">reduce</span><span class="p">(</span><span class="n">scores</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
  173. <span class="k">def</span> <span class="nf">intersection_and_union</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">im_lab</span><span class="p">,</span> <span class="n">num_class</span><span class="p">):</span>
  174. <span class="n">im_pred</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_pred</span><span class="p">)</span>
  175. <span class="n">im_lab</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_lab</span><span class="p">)</span>
  176. <span class="c1"># Remove classes from unlabeled pixels in gt image.</span>
  177. <span class="n">im_pred</span> <span class="o">=</span> <span class="n">im_pred</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_lab</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">)</span>
  178. <span class="c1"># Compute area intersection:</span>
  179. <span class="n">intersection</span> <span class="o">=</span> <span class="n">im_pred</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_pred</span> <span class="o">==</span> <span class="n">im_lab</span><span class="p">)</span>
  180. <span class="n">area_inter</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">intersection</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
  181. <span class="c1"># Compute area union:</span>
  182. <span class="n">area_pred</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
  183. <span class="n">area_lab</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">im_lab</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
  184. <span class="n">area_union</span> <span class="o">=</span> <span class="n">area_pred</span> <span class="o">+</span> <span class="n">area_lab</span> <span class="o">-</span> <span class="n">area_inter</span>
  185. <span class="k">return</span> <span class="n">area_inter</span><span class="p">,</span> <span class="n">area_union</span>
  186. <span class="k">class</span> <span class="nc">AbstractMetricsArgsPrepFn</span><span class="p">(</span><span class="n">ABC</span><span class="p">):</span>
  187. <span class="sd">&quot;&quot;&quot;</span>
  188. <span class="sd"> Abstract preprocess metrics arguments class.</span>
  189. <span class="sd"> &quot;&quot;&quot;</span>
  190. <span class="nd">@abstractmethod</span>
  191. <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span>
  192. <span class="sd">&quot;&quot;&quot;</span>
  193. <span class="sd"> All base classes must implement this function and return a tuple of torch tensors (predictions, target).</span>
  194. <span class="sd"> &quot;&quot;&quot;</span>
  195. <span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
  196. <div class="viewcode-block" id="PreprocessSegmentationMetricsArgs"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.PreprocessSegmentationMetricsArgs">[docs]</a><span class="k">class</span> <span class="nc">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">):</span>
  197. <span class="sd">&quot;&quot;&quot;</span>
  198. <span class="sd"> Default segmentation inputs preprocess function before updating segmentation metrics, handles multiple inputs and</span>
  199. <span class="sd"> apply normalizations.</span>
  200. <span class="sd"> &quot;&quot;&quot;</span>
  201. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">apply_arg_max</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">apply_sigmoid</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  202. <span class="sd">&quot;&quot;&quot;</span>
  203. <span class="sd"> :param apply_arg_max: Whether to apply argmax on predictions tensor.</span>
  204. <span class="sd"> :param apply_sigmoid: Whether to apply sigmoid on predictions tensor.</span>
  205. <span class="sd"> &quot;&quot;&quot;</span>
  206. <span class="bp">self</span><span class="o">.</span><span class="n">apply_arg_max</span> <span class="o">=</span> <span class="n">apply_arg_max</span>
  207. <span class="bp">self</span><span class="o">.</span><span class="n">apply_sigmoid</span> <span class="o">=</span> <span class="n">apply_sigmoid</span>
  208. <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span>
  209. <span class="c1"># WHEN DEALING WITH MULTIPLE OUTPUTS- OUTPUTS[0] IS THE MAIN SEGMENTATION MAP</span>
  210. <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
  211. <span class="n">preds</span> <span class="o">=</span> <span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
  212. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_arg_max</span><span class="p">:</span>
  213. <span class="n">_</span><span class="p">,</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  214. <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_sigmoid</span><span class="p">:</span>
  215. <span class="n">preds</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span>
  216. <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">long</span><span class="p">()</span>
  217. <span class="k">return</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span></div>
  218. <div class="viewcode-block" id="PixelAccuracy"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.PixelAccuracy">[docs]</a><span class="k">class</span> <span class="nc">PixelAccuracy</span><span class="p">(</span><span class="n">Metric</span><span class="p">):</span>
  219. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ignore_label</span><span class="o">=-</span><span class="mi">100</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">metrics_args_prep_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
  220. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">)</span>
  221. <span class="bp">self</span><span class="o">.</span><span class="n">ignore_label</span> <span class="o">=</span> <span class="n">ignore_label</span>
  222. <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span> <span class="o">=</span> <span class="kc">True</span>
  223. <span class="bp">self</span><span class="o">.</span><span class="n">add_state</span><span class="p">(</span><span class="s2">&quot;total_correct&quot;</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">0.0</span><span class="p">),</span> <span class="n">dist_reduce_fx</span><span class="o">=</span><span class="s2">&quot;sum&quot;</span><span class="p">)</span>
  224. <span class="bp">self</span><span class="o">.</span><span class="n">add_state</span><span class="p">(</span><span class="s2">&quot;total_label&quot;</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">0.0</span><span class="p">),</span> <span class="n">dist_reduce_fx</span><span class="o">=</span><span class="s2">&quot;sum&quot;</span><span class="p">)</span>
  225. <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span> <span class="o">=</span> <span class="n">metrics_args_prep_fn</span> <span class="ow">or</span> <span class="n">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">apply_arg_max</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  226. <div class="viewcode-block" id="PixelAccuracy.update"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.PixelAccuracy.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
  227. <span class="n">predict</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
  228. <span class="n">labeled_mask</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">ne</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ignore_label</span><span class="p">)</span>
  229. <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">labeled_mask</span><span class="p">)</span>
  230. <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span> <span class="o">*</span> <span class="n">labeled_mask</span><span class="p">)</span>
  231. <span class="bp">self</span><span class="o">.</span><span class="n">total_correct</span> <span class="o">+=</span> <span class="n">pixel_correct</span>
  232. <span class="bp">self</span><span class="o">.</span><span class="n">total_label</span> <span class="o">+=</span> <span class="n">pixel_labeled</span></div>
  233. <div class="viewcode-block" id="PixelAccuracy.compute"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.PixelAccuracy.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  234. <span class="n">_total_correct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">total_correct</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;int64&quot;</span><span class="p">)</span>
  235. <span class="n">_total_label</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">total_label</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s2">&quot;int64&quot;</span><span class="p">)</span>
  236. <span class="n">pix_acc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span> <span class="o">*</span> <span class="n">_total_correct</span> <span class="o">/</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">spacing</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span> <span class="o">+</span> <span class="n">_total_label</span><span class="p">)</span>
  237. <span class="k">return</span> <span class="n">pix_acc</span></div></div>
  238. <div class="viewcode-block" id="IoU"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.IoU">[docs]</a><span class="k">class</span> <span class="nc">IoU</span><span class="p">(</span><span class="n">torchmetrics</span><span class="o">.</span><span class="n">JaccardIndex</span><span class="p">):</span>
  239. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
  240. <span class="bp">self</span><span class="p">,</span>
  241. <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  242. <span class="n">dist_sync_on_step</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
  243. <span class="n">ignore_index</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  244. <span class="n">reduction</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;elementwise_mean&quot;</span><span class="p">,</span>
  245. <span class="n">threshold</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
  246. <span class="n">metrics_args_prep_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  247. <span class="p">):</span>
  248. <span class="k">if</span> <span class="n">num_classes</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
  249. <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;IoU class only for multi-class usage! For binary usage, please call </span><span class="si">{</span><span class="n">BinaryIOU</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
  250. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span> <span class="n">threshold</span><span class="o">=</span><span class="n">threshold</span><span class="p">)</span>
  251. <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span> <span class="o">=</span> <span class="n">metrics_args_prep_fn</span> <span class="ow">or</span> <span class="n">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">apply_arg_max</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  252. <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span> <span class="o">=</span> <span class="kc">True</span>
  253. <div class="viewcode-block" id="IoU.update"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.IoU.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
  254. <span class="n">preds</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
  255. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">preds</span><span class="o">=</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span></div></div>
  256. <div class="viewcode-block" id="Dice"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.Dice">[docs]</a><span class="k">class</span> <span class="nc">Dice</span><span class="p">(</span><span class="n">torchmetrics</span><span class="o">.</span><span class="n">JaccardIndex</span><span class="p">):</span>
  257. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
  258. <span class="bp">self</span><span class="p">,</span>
  259. <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  260. <span class="n">dist_sync_on_step</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
  261. <span class="n">ignore_index</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  262. <span class="n">reduction</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;elementwise_mean&quot;</span><span class="p">,</span>
  263. <span class="n">threshold</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
  264. <span class="n">metrics_args_prep_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  265. <span class="p">):</span>
  266. <span class="k">if</span> <span class="n">num_classes</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
  267. <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Dice class only for multi-class usage! For binary usage, please call </span><span class="si">{</span><span class="n">BinaryDice</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
  268. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">,</span> <span class="n">threshold</span><span class="o">=</span><span class="n">threshold</span><span class="p">)</span>
  269. <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span> <span class="o">=</span> <span class="n">metrics_args_prep_fn</span> <span class="ow">or</span> <span class="n">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">apply_arg_max</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  270. <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span> <span class="o">=</span> <span class="kc">True</span>
  271. <div class="viewcode-block" id="Dice.update"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.Dice.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
  272. <span class="n">preds</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">metrics_args_prep_fn</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
  273. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">preds</span><span class="o">=</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span></div>
  274. <div class="viewcode-block" id="Dice.compute"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.Dice.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">:</span>
  275. <span class="sd">&quot;&quot;&quot;Computes Dice coefficient&quot;&quot;&quot;</span>
  276. <span class="k">return</span> <span class="n">_dice_from_confmat</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">confmat</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ignore_index</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">absent_score</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">reduction</span><span class="p">)</span></div></div>
  277. <div class="viewcode-block" id="BinaryIOU"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.BinaryIOU">[docs]</a><span class="k">class</span> <span class="nc">BinaryIOU</span><span class="p">(</span><span class="n">IoU</span><span class="p">):</span>
  278. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
  279. <span class="bp">self</span><span class="p">,</span>
  280. <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
  281. <span class="n">ignore_index</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  282. <span class="n">threshold</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
  283. <span class="n">metrics_args_prep_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  284. <span class="p">):</span>
  285. <span class="n">metrics_args_prep_fn</span> <span class="o">=</span> <span class="n">metrics_args_prep_fn</span> <span class="ow">or</span> <span class="n">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">apply_sigmoid</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  286. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span>
  287. <span class="n">num_classes</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
  288. <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">,</span>
  289. <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">,</span>
  290. <span class="n">reduction</span><span class="o">=</span><span class="s2">&quot;none&quot;</span><span class="p">,</span>
  291. <span class="n">threshold</span><span class="o">=</span><span class="n">threshold</span><span class="p">,</span>
  292. <span class="n">metrics_args_prep_fn</span><span class="o">=</span><span class="n">metrics_args_prep_fn</span><span class="p">,</span>
  293. <span class="p">)</span>
  294. <span class="bp">self</span><span class="o">.</span><span class="n">greater_component_is_better</span> <span class="o">=</span> <span class="p">{</span>
  295. <span class="s2">&quot;target_IOU&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  296. <span class="s2">&quot;background_IOU&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  297. <span class="s2">&quot;mean_IOU&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  298. <span class="p">}</span>
  299. <span class="bp">self</span><span class="o">.</span><span class="n">component_names</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">greater_component_is_better</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
  300. <div class="viewcode-block" id="BinaryIOU.compute"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.BinaryIOU.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  301. <span class="n">ious</span> <span class="o">=</span> <span class="nb">super</span><span class="p">(</span><span class="n">BinaryIOU</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">compute</span><span class="p">()</span>
  302. <span class="k">return</span> <span class="p">{</span><span class="s2">&quot;target_IOU&quot;</span><span class="p">:</span> <span class="n">ious</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="s2">&quot;background_IOU&quot;</span><span class="p">:</span> <span class="n">ious</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="s2">&quot;mean_IOU&quot;</span><span class="p">:</span> <span class="n">ious</span><span class="o">.</span><span class="n">mean</span><span class="p">()}</span></div></div>
  303. <div class="viewcode-block" id="BinaryDice"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.BinaryDice">[docs]</a><span class="k">class</span> <span class="nc">BinaryDice</span><span class="p">(</span><span class="n">Dice</span><span class="p">):</span>
  304. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
  305. <span class="bp">self</span><span class="p">,</span>
  306. <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
  307. <span class="n">ignore_index</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  308. <span class="n">threshold</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
  309. <span class="n">metrics_args_prep_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AbstractMetricsArgsPrepFn</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  310. <span class="p">):</span>
  311. <span class="n">metrics_args_prep_fn</span> <span class="o">=</span> <span class="n">metrics_args_prep_fn</span> <span class="ow">or</span> <span class="n">PreprocessSegmentationMetricsArgs</span><span class="p">(</span><span class="n">apply_sigmoid</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  312. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span>
  313. <span class="n">num_classes</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
  314. <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">,</span>
  315. <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">,</span>
  316. <span class="n">reduction</span><span class="o">=</span><span class="s2">&quot;none&quot;</span><span class="p">,</span>
  317. <span class="n">threshold</span><span class="o">=</span><span class="n">threshold</span><span class="p">,</span>
  318. <span class="n">metrics_args_prep_fn</span><span class="o">=</span><span class="n">metrics_args_prep_fn</span><span class="p">,</span>
  319. <span class="p">)</span>
  320. <span class="bp">self</span><span class="o">.</span><span class="n">greater_component_is_better</span> <span class="o">=</span> <span class="p">{</span>
  321. <span class="s2">&quot;target_Dice&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  322. <span class="s2">&quot;background_Dice&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  323. <span class="s2">&quot;mean_Dice&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  324. <span class="p">}</span>
  325. <span class="bp">self</span><span class="o">.</span><span class="n">component_names</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">greater_component_is_better</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
  326. <div class="viewcode-block" id="BinaryDice.compute"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.metrics.BinaryDice.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  327. <span class="n">dices</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">compute</span><span class="p">()</span>
  328. <span class="k">return</span> <span class="p">{</span><span class="s2">&quot;target_Dice&quot;</span><span class="p">:</span> <span class="n">dices</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="s2">&quot;background_Dice&quot;</span><span class="p">:</span> <span class="n">dices</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="s2">&quot;mean_Dice&quot;</span><span class="p">:</span> <span class="n">dices</span><span class="o">.</span><span class="n">mean</span><span class="p">()}</span></div></div>
  329. </pre></div>
  330. </div>
  331. </div>
  332. <footer>
  333. <hr/>
  334. <div role="contentinfo">
  335. <p>&#169; Copyright 2021, SuperGradients team.</p>
  336. </div>
  337. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  338. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  339. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  340. </footer>
  341. </div>
  342. </div>
  343. </section>
  344. </div>
  345. <script>
  346. jQuery(function () {
  347. SphinxRtdTheme.Navigation.enable(true);
  348. });
  349. </script>
  350. </body>
  351. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...