1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
- import torch
- import unittest
- import torch.nn as nn
- from super_gradients.training.losses.mask_loss import MaskAttentionLoss
- from super_gradients.training.utils.segmentation_utils import to_one_hot
- class MaskAttentionLossTest(unittest.TestCase):
- def setUp(self) -> None:
- self.img_size = 32
- self.num_classes = 4
- self.batch = 3
- torch.manual_seed(65)
- def _get_default_predictions_tensor(self):
- return torch.randn(self.batch, self.num_classes, self.img_size, self.img_size)
- def _get_default_target_tensor(self):
- return torch.randint(0, self.num_classes, size=(self.batch, self.img_size, self.img_size))
- def _get_default_mask_tensor(self):
- mask = torch.zeros(self.batch, 1, self.img_size, self.img_size)
- # half tensor rows as 1
- mask[:, :, self.img_size // 2 :] = 1
- return mask.float()
- def _assertion_torch_values(self, expected_value: torch.Tensor, found_value: torch.Tensor, rtol: float = 1e-5):
- self.assertTrue(torch.allclose(found_value, expected_value, rtol=rtol), msg=f"Unequal torch tensors: excepted: {expected_value}, found: {found_value}")
- def test_with_cross_entropy_loss(self):
- """
- Test simple case using CrossEntropyLoss,
- shapes: predict [BxCxHxW], target [BxHxW], mask [Bx1xHxW]
- """
- predict = torch.randn(self.batch, self.num_classes, self.img_size, self.img_size)
- target = self._get_default_target_tensor()
- mask = self._get_default_mask_tensor()
- loss_weigths = [1.0, 0.5]
- ce_crit = nn.CrossEntropyLoss(reduction="none")
- mask_ce_crit = MaskAttentionLoss(criterion=ce_crit, loss_weights=loss_weigths)
- # expected result
- ce_loss = ce_crit(predict, target)
- _mask = mask.view_as(ce_loss)
- mask_loss = ce_loss * _mask
- mask_loss = mask_loss[_mask == 1] # consider only mask samples for mask loss computing
- expected_loss = ce_loss.mean() * loss_weigths[0] + mask_loss.mean() * loss_weigths[1]
- # mask ce loss result
- loss = mask_ce_crit(predict, target, mask)
- self._assertion_torch_values(expected_loss, loss)
- def test_with_binary_cross_entropy_loss(self):
- """
- Test case using BCEWithLogitsLoss, where mask is a spatial mask applied across all channels.
- shapes: predict [BxCxHxW], target (one-hot) [BxCxHxW], mask [Bx1xHxW]
- """
- predict = self._get_default_predictions_tensor()
- target = torch.randn(self.batch, self.num_classes, self.img_size, self.img_size)
- mask = self._get_default_mask_tensor()
- loss_weigths = [1.0, 0.5]
- ce_crit = nn.BCEWithLogitsLoss(reduction="none")
- mask_ce_crit = MaskAttentionLoss(criterion=ce_crit, loss_weights=loss_weigths)
- # expected result
- ce_loss = ce_crit(predict, target)
- _mask = mask.expand_as(ce_loss)
- mask_loss = ce_loss * _mask
- mask_loss = mask_loss[_mask == 1] # consider only mask samples for mask loss computing
- expected_loss = ce_loss.mean() * loss_weigths[0] + mask_loss.mean() * loss_weigths[1]
- # mask ce loss result
- loss = mask_ce_crit(predict, target, mask)
- self._assertion_torch_values(expected_loss, loss)
- def test_reduction_none(self):
- """
- Test case mask loss with reduction="none".
- shapes: predict [BxCxHxW], target [BxHxW], mask [Bx1xHxW], except output to be same as target shape.
- """
- predict = torch.randn(self.batch, self.num_classes, self.img_size, self.img_size)
- target = self._get_default_target_tensor()
- mask = self._get_default_mask_tensor()
- loss_weigths = [1.0, 0.5]
- ce_crit = nn.CrossEntropyLoss(reduction="none")
- mask_ce_crit = MaskAttentionLoss(criterion=ce_crit, loss_weights=loss_weigths, reduction="none")
- # expected result
- ce_loss = ce_crit(predict, target)
- _mask = mask.view_as(ce_loss)
- mask_loss = ce_loss * _mask
- expected_loss = ce_loss * loss_weigths[0] + mask_loss * loss_weigths[1]
- # mask ce loss result
- loss = mask_ce_crit(predict, target, mask)
- self._assertion_torch_values(expected_loss, loss)
- self.assertEqual(target.size(), loss.size())
- def test_assert_valid_arguments(self):
- # ce_criterion reduction must be none
- kwargs = {"criterion": nn.CrossEntropyLoss(reduction="mean")}
- self.failUnlessRaises(ValueError, MaskAttentionLoss, **kwargs)
- # loss_weights must have only 2 values
- kwargs = {"criterion": nn.CrossEntropyLoss(reduction="none"), "loss_weights": [1.0, 1.0, 1.0]}
- self.failUnlessRaises(ValueError, MaskAttentionLoss, **kwargs)
- # mask loss_weight must be a positive value
- kwargs = {"criterion": nn.CrossEntropyLoss(reduction="none"), "loss_weights": [1.0, 0.0]}
- self.failUnlessRaises(ValueError, MaskAttentionLoss, **kwargs)
- def test_multi_class_mask(self):
- """
- Test case using MSELoss, where there is different spatial masks per channel.
- shapes: predict [BxCxHxW], target [BxCxHxW], mask [BxCxHxW]
- """
- predict = self._get_default_predictions_tensor()
- # when using bce loss, target is usually a one hot vector and must be with the same shape as the prediction.
- target = self._get_default_target_tensor()
- target = to_one_hot(target, self.num_classes).float()
- mask = torch.randint(0, 2, size=(self.batch, self.num_classes, self.img_size, self.img_size)).float()
- loss_weigths = [1.0, 0.5]
- ce_crit = nn.MSELoss(reduction="none")
- mask_ce_crit = MaskAttentionLoss(criterion=ce_crit, loss_weights=loss_weigths)
- # expected result
- mse_loss = ce_crit(predict, target)
- mask_loss = mse_loss * mask
- mask_loss = mask_loss[mask == 1] # consider only mask samples for mask loss computing
- expected_loss = mse_loss.mean() * loss_weigths[0] + mask_loss.mean() * loss_weigths[1]
- # mask ce loss result
- loss = mask_ce_crit(predict, target, mask)
- self._assertion_torch_values(expected_loss, loss)
- def test_broadcast_exceptions(self):
- """
- Test assertion in mask broadcasting
- """
- predict = torch.randn(self.batch, self.num_classes, self.img_size, self.img_size)
- target = torch.randint(0, self.num_classes, size=(self.batch, self.num_classes, self.img_size, self.img_size)).float()
- loss_weigths = [1.0, 0.5]
- ce_crit = nn.BCEWithLogitsLoss(reduction="none")
- mask_ce_crit = MaskAttentionLoss(criterion=ce_crit, loss_weights=loss_weigths)
- # mask with wrong spatial size.
- mask = torch.zeros(self.batch, self.img_size, 1).float()
- self.failUnlessRaises(AssertionError, mask_ce_crit, *(predict, target, mask))
- # mask with wrong batch size.
- mask = torch.zeros(self.batch + 1, self.img_size, self.img_size).float()
- self.failUnlessRaises(AssertionError, mask_ce_crit, *(predict, target, mask))
- # mask with invalid channels num.
- mask = torch.zeros(self.batch, 2, self.img_size, self.img_size).float()
- self.failUnlessRaises(AssertionError, mask_ce_crit, *(predict, target, mask))
- if __name__ == "__main__":
- unittest.main()
|