1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
- <div align="center">
- <img src="docs/assets/SG_img/SG - Horizontal.png" width="600"/>
- <br/><br/>
-
- **Easily train or fine-tune SOTA computer vision models with one open source training library**
- [](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
- #### Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> [Fill Survey](https://hz8qtlvwkaw.typeform.com/to/OpKda0Qe)
- ______________________________________________________________________
-
- <p align="center">
- <a href="https://www.supergradients.com/">Website</a> •
- <a href="#why-use-supergradients">Why Use SG?</a> •
- <a href="https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library">User Guide</a> •
- <a href="https://deci-ai.github.io/super-gradients/super_gradients.common.html">Docs</a> •
- <a href="#getting-started">Getting Started Notebooks</a> •
- <a href="#transfer-learning">Transfer Learning</a> •
- <a href="#computer-vision-models---pretrained-checkpoints">Pretrained Models</a> •
- <a href="#community">Community</a> •
- <a href="#license">License</a> •
- <a href="#deci-platform">Deci Platform</a>
- </p>
- <p align="center">
- <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
- <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
- <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
- <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-30-brightgreen" />
- <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
- <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
- <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
- <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" />
- </p>
- </div>
- # SuperGradients
- ## Introduction
- Welcome to SuperGradients, a free, open-source training library for PyTorch-based deep learning models.
- SuperGradients allows you to train or fine-tune SOTA pre-trained models for all the most commonly applied computer vision tasks with just one training library. We currently support object detection, image classification and semantic segmentation for videos and images.
- Docs and full user guide[](#)
- ### Why use SuperGradients?
-
- **Built-in SOTA Models**
- Easily load and fine-tune production-ready, [pre-trained SOTA models](https://github.com/Deci-AI/super-gradients#pretrained-classification-pytorch-checkpoints) that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
-
- **Easily Reproduce our Results**
-
- Why do all the grind work, if we already did it for you? leverage tested and proven [recipes](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/recipes) & [code examples](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples) for a wide range of computer vision models generated by our team of deep learning experts. Easily configure your own or use plug & play hyperparameters for training, dataset, and architecture.
-
- **Production Readiness and Ease of Integration**
-
- All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVINO (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
- <div align="center">
- <img src="./docs/assets/SG_img/detection-demo.png" width="600px">
- </div>
-
- ## What's New
- * 【07/08/2022】DDRNet23 - new pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-semantic-segmentation-pytorch-checkpoints) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
- * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
- * 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) on COCO - Tailored for edge devices! 📱
- * 【07/07/2022】 STDC - new pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-semantic-segmentation-pytorch-checkpoints) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
- * 【16/06/2022】 ResNet50 - new pre-trained checkpoint and [recipe](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/imagenet_resnet50_kd.yaml) for ImageNet top-1 score of 81.9 💪
- * 【09/06/2022】 ViT models (Vision Transformer) - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) (ViT, BEiT).
- * 【09/06/2022】 Knowledge Distillation support - [training module](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/kd_model/kd_model.py) and [notebook](https://bit.ly/3HQvbsg).
- * 【06/04/2022】 Integration with professional tools - [Weights and Biases](https://bit.ly/3BJzCUv) and [DagsHub](https://bit.ly/3bznLhc).
- * 【09/03/2022】 New [quick start](#quick-start-notebook---semantic-segmentation) and [transfer learning](#transfer-learning-with-sg-notebook---semantic-segmentation) example notebooks for Semantic Segmentation.
- * 【07/02/2022】 We added RegSeg recipes and pre-trained models to our [Semantic Segmentation models](#pretrained-semantic-segmentation-pytorch-checkpoints).
- * 【01/02/2022】 We added issue templates for feature requests and bug reporting.
- * 【20/01/2022】 STDC family - new recipes added with even higher mIoU💪
- Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
- ## Coming soon
- - [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
- - [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
- - [ ] QAT capabilities (Quantization Aware Training).
- - [ ] Dali implementation.
- - [ ] Integration with more professional tools.
- - [ ] Improved pre-trained checkpoints and recipes (DDRNet, ResNet, RegSeg, etc.)
- __________________________________________________________________________________________________________
- ### Table of Content
- <!-- toc -->
- - [Getting Started](#getting-started)
- - [Quick Start Notebook - Classification example](#quick-start-notebook---classification)
- - [Quick Start Notebook - Semantic segmentation example](#quick-start-notebook---semantic-segmentation)
- <!-- - [Quick Start Notebook - Object detection example](#quick-start-notebook---object-detection)
- - [Walkthrough Notebook](#supergradients-complete-walkthrough-notebook)
- - [Transfer Learning with SG Notebook - Object detection example](#transfer-learning-with-sg-notebook---object-detection)
- - [Quick Start Notebook - Upload to Deci Platform example](#quick-start-notebook---upload-your-model-to-deci-platform) -->
- - [Transfer Learning](#transfer-learning)
- - [Transfer Learning with SG Notebook - Semantic segmentation example](#transfer-learning-with-sg-notebook---semantic-segmentation)
- - [Knowledge Distillation Training](#knowledge-distillation-training)
- - [Knowledge Distillation Training Quick Start with SG Notebook - ResNet18 example](#knowledge-distillation-training-quick-start-with-sg-notebook---resnet18-example)
- - [Installation Methods](#installation-methods)
- - [Prerequisites](#prerequisites)
- - [Quick Installation](#quick-installation)
- - [Computer Vision Models - Pretrained Checkpoints](#computer-vision-models---pretrained-checkpoints)
- - [Pretrained Classification PyTorch Checkpoints](#pretrained-classification-pytorch-checkpoints)
- - [Pretrained Object Detection PyTorch Checkpoints](#pretrained-object-detection-pytorch-checkpoints)
- - [Pretrained Semantic Segmentation PyTorch Checkpoints](#pretrained-semantic-segmentation-pytorch-checkpoints)
- - [Implemented Model Architectures](#implemented-model-architectures)
- - [Contributing](#contributing)
- - [Citation](#citation)
- - [Community](#community)
- - [License](#license)
- - [Deci Platform](#deci-platform)
- <!-- tocstop -->
- ## Getting Started
- ### Start Training with Just 1 Command Line
- The most simple and straightforward way to start training SOTA performance models with SuperGradients reproducible recipes. Just define your dataset path and where you want your checkpoints to be saved and you are good to go from your terminal!
-
- ```bash
- python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
- ```
- ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
- Want to try our pre-trained models on your machine? Import SuperGradients, initialize your SgModel, and load your desired architecture and pre-trained weights from our [SOTA model zoo](#computer-vision-models---pretrained-checkpoints)
-
- ```python
- # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
- # This is an example of loading COCO-2017 pre-trained weights for a YOLOX Nano object detection model
-
- import super_gradients
- from super_gradients.training import SgModel
- trainer = SgModel(experiment_name="yoloxn_coco_experiment",ckpt_root_dir=<CHECKPOINT_DIRECTORY>)
- trainer.build_model(architecture="yolox_n", arch_params={"pretrained_weights": "coco", num_classes": 80})
- ```
-
- ### Quick Start Notebook - Classification
- Get started with our quick start notebook for image classification tasks on Google Colab for a quick and easy start using free GPU hardware.
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3ufnsgT"><img src="./docs/assets/SG_img/colab_logo.png" />Classification Quick Start in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_classification.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- ### Quick Start Notebook - Semantic Segmentation
- Get started with our quick start notebook for semantic segmentation tasks on Google Colab for a quick and easy start using free GPU hardware.
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3Jp7w1U"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Quick Start in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- <!--
- ### Quick Start Notebook - Object Detection
- Get started with our quick start notebook for object detection tasks on Google Colab for a quick and easy start using free GPU hardware.
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3wqMsEM"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Quick Start in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
-
- ### Quick Start Notebook - Upload your model to Deci Platform
- Get Started with an example of how to upload your trained model to Deci Platform for runtime optimization and compilation to your target deployment HW.
- <table class="tfo-notebook-buttons" align="left">
- <tbody>
- <tr>
- <td vertical-align="middle">
- <img src="./docs/assets/SG_img/colab_logo.png" />
- <a target="_blank" href="https://bit.ly/3cAkoXG">
- Upload to Deci Platform in Google Colab
- </a>
- </td>
- <td vertical-align="middle">
- <img src="./docs/assets/SG_img/download_logo.png" />
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_model_upload_deci_lab.ipynb">
- Download notebook
- </a>
- </td>
- <td>
- <img src="./docs/assets/SG_img/GitHub_logo.png" />
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/deci_lab_export_example/deci_lab_export_example.py">
- View source on GitHub
- </a>
- </td>
- </tr>
- </tbody>
- </table>
- </br></br>
- ### SuperGradients Complete Walkthrough Notebook
- Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3JspSPF"><img src="./docs/assets/SG_img/colab_logo.png" />SuperGradients Walkthrough in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_Walkthrough.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- ### Transfer Learning with SG Notebook - Object Detection
- Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloX nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3iGvnP7"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Transfer Learning in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_transfer_learning_object_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- -->
-
- ## Transfer Learning
- ### Transfer Learning with SG Notebook - Semantic Segmentation
- Learn more about SuperGradients transfer learning or fine tuning abilities with our Citiscapes pre-trained RegSeg48 fine tuning into a sub-dataset of Supervisely example notebook on Google Colab for an easy to use tutorial using free GPU hardware
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/37P04PN"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Transfer Learning in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_transfer_learning_semantic_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- ## Knowledge Distillation Training
- ### Knowledge Distillation Training Quick Start with SG Notebook - ResNet18 example
- Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
- Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://bit.ly/3HQvbsg"><img src="./docs/assets/SG_img/colab_logo.png" />KD Training in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_knowledge_distillation_quickstart.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- ## Installation Methods
- ### Prerequisites
- <details>
-
- <summary>General requirements</summary>
-
- - Python 3.7, 3.8 or 3.9 installed.
- - torch>=1.9.0
- - https://pytorch.org/get-started/locally/
- - The python packages that are specified in requirements.txt;
- </details>
-
- <details>
-
- <summary>To train on nvidia GPUs</summary>
-
- - [Nvidia CUDA Toolkit >= 11.2](https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu)
- - CuDNN >= 8.1.x
- - Nvidia Driver with CUDA >= 11.2 support (≥460.x)
-
- </details>
-
- ### Quick Installation
- <details>
-
- <summary>Install stable version using PyPi</summary>
- See in [PyPi](https://pypi.org/project/super-gradients/)
- ```bash
- pip install super-gradients
- ```
- That's it !
- </details>
-
- <details>
-
- <summary>Install using GitHub</summary>
- ```bash
- pip install git+https://github.com/Deci-AI/super-gradients.git@stable
- ```
- </details>
- ## Computer Vision Models - Pretrained Checkpoints
- ### Pretrained Classification PyTorch Checkpoints
- | Model | Dataset | Resolution | Top-1 | Top-5 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
- |------------ | ------ | ---------- |----------- | ----------- | ----------- |---------- |----------- | ----------- | :------: |
- | ViT base | ImageNet21K | 224x224 | 84.15 | - |**4.46ms** |**4.60ms** | **-** * |**-**|**57.22ms** |
- | ViT large | ImageNet21K | 224x224 | 85.64 | - |**12.81ms** |**13.19ms** | **-** * |**-**|**187.22ms** |
- | BEiT | ImageNet21K | 224x224 | - | - |**-ms** |**-ms** | **-** * |**-**|**-ms** |
- | EfficientNet B0 | ImageNet | 224x224 | 77.62 | 93.49 |**0.93ms** |**1.38ms** | **-** * |**-**|**3.44ms** |
- | RegNet Y200 | ImageNet |224x224 | 70.88 | 89.35 |**0.63ms** | **1.08ms** | **2.16ms** |**2.47ms**|**2.06ms** |
- | RegNet Y400 | ImageNet |224x224 | 74.74 | 91.46 |**0.80ms** | **1.25ms** |**2.62ms** |**2.91ms** |**2.87ms** |
- | RegNet Y600 | ImageNet |224x224 | 76.18 | 92.34 |**0.77ms** | **1.22ms** |**2.64ms** |**2.93ms** |**2.39ms** |
- | RegNet Y800 | ImageNet |224x224 | 77.07 | 93.26 |**0.74ms** | **1.19ms** |**2.77ms** |**3.04ms** |**2.81ms** |
- | ResNet 18 | ImageNet |224x224 | 70.6 | 89.64 |**0.52ms** | **0.95ms** |**2.01ms**|**2.30ms** |**4.56ms** |
- | ResNet 34 | ImageNet |224x224 | 74.13 | 91.7 |**0.92ms** |**1.34ms** |**3.57ms**|**3.87ms** | **7.64ms** |
- | ResNet 50 | ImageNet |224x224 | 81.91 | 93.0 |**1.03ms** | **1.44ms** | **4.78ms**|**5.10ms** |**9.25ms** |
- | MobileNet V3_large-150 epochs | ImageNet |224x224 | 73.79 | 91.54 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
- | MobileNet V3_large-300 epochs | ImageNet |224x224 | 74.52 | 91.92 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
- | MobileNet V3_small | ImageNet |224x224 |67.45 | 87.47 |**0.55ms** | **0.96ms** |**2.01ms** *|**2.35ms** |**1.06ms** |
- | MobileNet V2_w1 | ImageNet |224x224 | 73.08 | 91.1 |**0.46 ms**| **0.89ms** |**1.65ms** *|**1.90ms** | **1.56ms** |
- > **NOTE:** <br/>
- > - Latency (HW)* - Hardware performance (not including IO)<br/>
- > - Latency (Production)** - Production Performance (including IO)
- > - Performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
- > - Performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
- ### Pretrained Object Detection PyTorch Checkpoints
- | Model | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
- |------------- |------ | ---------- |------ | -------- |------ | ---------- |------ | :------: |
- | SSD lite MobileNet v2 | COCO |320x320 |21.5 |**0.77ms** |**1.40ms**|**5.28ms** |**6.44ms** |**4.13ms**|
- | SSD lite MobileNet v1 | COCO |320x320 |24.3 |**1.55ms** |**2.84ms**|**8.07ms** |**9.14ms** |**22.76ms**|
- | YOLOX nano | COCO |640x640 |26.77|**2.47ms** |**4.09ms**|**11.49ms** |**12.97ms** |**-**|
- | YOLOX tiny | COCO |640x640 |37.18|**3.16ms** |**4.61ms**|**15.23ms** |**19.24ms** |**-**|
- | YOLOX small | COCO |640x640 |40.47 |**3.58ms** |**4.94ms**|**18.88ms** |**22.48ms** |**-**|
- | YOLOX medium| COCO |640x640 |46.4 |**6.40ms** |**7.65ms**|**39.22ms** |**44.5ms** |**-**|
- | YOLOX large | COCO |640x640 |49.25 |**10.07ms** |**11.12ms**|**68.73ms** |**77.01ms** |**-**|
-
- > **NOTE:** <br/>
- > - Latency (HW)* - Hardware performance (not including IO)<br/>
- > - Latency (Production)** - Production Performance (including IO)
- > - Latency performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
- > - Latency performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
- ### Pretrained Semantic Segmentation PyTorch Checkpoints
- | Model | Dataset | Resolution | mIoU | Latency b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO |
- |--------------------- |------ | ---------- | ------ | -------- | :------: |
- | DDRNet 23 | Cityscapes |1024x2048 |80.26 |**7.62ms** |**25.94ms**|
- | DDRNet 23 slim | Cityscapes |1024x2048 |78.01 |**3.56ms** |**22.80ms**|
- | STDC 1-Seg50 | Cityscapes | 512x1024 |75.07 |**2.83ms** |**12.57ms**|
- | STDC 1-Seg75 | Cityscapes | 768x1536 |77.8 |**5.71ms** |**26.70ms**|
- | STDC 2-Seg50 | Cityscapes | 512x1024 |75.79 |**3.74ms** |**13.89ms**
- | STDC 2-Seg75 | Cityscapes | 768x1536 |78.93 |**7.35ms** |**28.18ms**|
- | RegSeg (exp48) | Cityscapes | 1024x2048 |78.15 |**13.09ms** |**41.88ms**|
- | Larger RegSeg (exp53) | Cityscapes | 1024x2048 |79.2|**24.82ms** |**51.87ms**|
- | ShelfNet LW 34 | COCO Segmentation (21 classes from PASCAL including background) |512x512 |65.1 |**-** |**-** |
- > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
- ## Implemented Model Architectures
-
- ### Image Classification
-
- - [DensNet (Densely Connected Convolutional Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/densenet.py) - Densely Connected Convolutional Networks [https://arxiv.org/pdf/1608.06993.pdf](https://arxiv.org/pdf/1608.06993.pdf)
- - [DPN](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/dpn.py) - Dual Path Networks [https://arxiv.org/pdf/1707.01629](https://arxiv.org/pdf/1707.01629)
- - [EfficientNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/efficientnet.py) - [https://arxiv.org/abs/1905.11946](https://arxiv.org/abs/1905.11946)
- - [GoogleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/googlenet.py) - [https://arxiv.org/pdf/1409.4842](https://arxiv.org/pdf/1409.4842)
- - [LeNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/lenet.py) - [https://yann.lecun.com/exdb/lenet/](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf)
- - [MobileNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenet.py) - Efficient Convolutional Neural Networks for Mobile Vision Applications [https://arxiv.org/pdf/1704.04861](https://arxiv.org/pdf/1704.04861)
- - [MobileNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv2.py) - [https://arxiv.org/pdf/1801.04381](https://arxiv.org/pdf/1801.04381)
- - [MobileNet v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv3.py) - [https://arxiv.org/pdf/1905.02244](https://arxiv.org/pdf/1905.02244)
- - [PNASNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/pnasnet.py) - Progressive Neural Architecture Search Networks [https://arxiv.org/pdf/1712.00559](https://arxiv.org/pdf/1712.00559)
- - [Pre-activation ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/preact_resnet.py) - [https://arxiv.org/pdf/1603.05027](https://arxiv.org/pdf/1603.05027)
- - [RegNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/regnet.py) - [https://arxiv.org/pdf/2003.13678.pdf](https://arxiv.org/pdf/2003.13678.pdf)
- - [RepVGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/repvgg.py) - Making VGG-style ConvNets Great Again [https://arxiv.org/pdf/2101.03697.pdf](https://arxiv.org/pdf/2101.03697.pdf)
- - [ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnet.py) - Deep Residual Learning for Image Recognition [https://arxiv.org/pdf/1512.03385](https://arxiv.org/pdf/1512.03385)
- - [ResNeXt](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnext.py) - Aggregated Residual Transformations for Deep Neural Networks [https://arxiv.org/pdf/1611.05431](https://arxiv.org/pdf/1611.05431)
- - [SENet ](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/senet.py) - Squeeze-and-Excitation Networks[https://arxiv.org/pdf/1709.01507](https://arxiv.org/pdf/1709.01507)
- - [ShuffleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenet.py) - [https://arxiv.org/pdf/1707.01083](https://arxiv.org/pdf/1707.01083)
- - [ShuffleNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenetv2.py) - Efficient Convolutional Neural Network for Mobile
- Devices[https://arxiv.org/pdf/1807.11164](https://arxiv.org/pdf/1807.11164)
- - [VGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/vgg.py) - Very Deep Convolutional Networks for Large-scale Image Recognition [https://arxiv.org/pdf/1409.1556](https://arxiv.org/pdf/1409.1556)
-
-
- ### Object Detection
-
- - [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
- - [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
- - [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py) - [https://arxiv.org/pdf/1512.02325](https://arxiv.org/pdf/1512.02325)
- - [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py) - [https://arxiv.org/abs/2107.08430](https://arxiv.org/abs/2107.08430)
-
-
- ### Semantic Segmentation
-
- - [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py) - [https://arxiv.org/pdf/2101.06085.pdf](https://arxiv.org/pdf/2101.06085.pdf)
- - [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py) - Multi-path networks based on U-Net for medical image segmentation [https://arxiv.org/pdf/1810.07810](https://arxiv.org/pdf/1810.07810)
- - [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py) - Rethink Dilated Convolution for Real-time Semantic Segmentation [https://arxiv.org/pdf/2111.09957](https://arxiv.org/pdf/2111.09957)
- - [ShelfNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/shelfnet.py) - [https://arxiv.org/pdf/1811.11254](https://arxiv.org/pdf/1811.11254)
- - [STDC](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/stdc.py) - Rethinking BiSeNet For Real-time Semantic Segmentation [https://arxiv.org/pdf/2104.13188](https://arxiv.org/pdf/2104.13188)
-
- </details>
-
- ## Documentation
- Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
-
- ## Contributing
- To learn about making a contribution to SuperGradients, please see our [Contribution page](CONTRIBUTING.md).
- Our awesome contributors:
-
- <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
- <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
- </a>
- <br/>Made with [contrib.rocks](https://contrib.rocks).
- ## Citation
- If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
- ## Community
- If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
- or want to file a bug or issue report, we would love to welcome you aboard!
- * Slack is the place to be and ask questions about SuperGradients and get support. [Click here to join our Slack](
- https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
-
- * To report a bug, [file an issue](https://github.com/Deci-AI/super-gradients/issues) on GitHub.
- * Join the [SG Newsletter](https://www.supergradients.com/#Newsletter)
- for staying up to date with new features and models, important announcements, and upcoming events.
-
- * For a short meeting with us, use this [link](https://calendly.com/ofer-baratz-deci/15min) and choose your preferred time.
- ## License
- This project is released under the [Apache 2.0 license](LICENSE).
-
-
- __________________________________________________________________________________________________________
- ## Deci Platform
- Deci Platform is our end to end platform for building, optimizing and deploying deep learning models to production.
- Sign up for our [FREE Community Tier](https://console.deci.ai/) to enjoy immediate improvement in throughput, latency, memory footprint and model size.
- Features:
- - Automatically compile and quantize your models with just a few clicks (TensorRT, OpenVINO).
- - Gain up to 10X improvement in throughput, latency, memory and model size.
- - Easily benchmark your models’ performance on different hardware and batch sizes.
- - Invite co-workers to collaborate on models and communicate your progress.
- - Deci supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons.
- Sign up for Deci Platform for free [here](https://console.deci.ai/)
|