Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

welcome.md.txt 13 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  1. <div align="center">
  2. <img src="assets/SG_img/SG - Horizontal.png" width="600"/>
  3. <br/><br/>
  4. **Easily train or fine-tune SOTA computer vision models with one open source training library**
  5. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
  6. ______________________________________________________________________
  7. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
  8. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
  9. <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
  10. <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-23-brightgreen" />
  11. <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
  12. <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
  13. <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
  14. <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" />
  15. </div>
  16. # SuperGradients
  17. ## Introduction
  18. Welcome to SuperGradients, a free, open-source training library for PyTorch-based deep learning models.
  19. SuperGradients allows you to train or fine-tune SOTA pre-trained models for all the most commonly applied computer vision tasks with just one training library. We currently support object detection, image classification and semantic segmentation for videos and images.
  20. Docs and full user guide[](#)
  21. ### Why use SuperGradients?
  22. **Built-in SOTA Models**
  23. Easily load and fine-tune production-ready, [pre-trained SOTA models](https://github.com/Deci-AI/super-gradients#pretrained-classification-pytorch-checkpoints) that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
  24. **Easily Reproduce our Results**
  25. Why do all the grind work, if we already did it for you? leverage tested and proven [recipes](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/recipes) & [code examples](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples) for a wide range of computer vision models generated by our team of deep learning experts. Easily configure your own or use plug & play hyperparameters for training, dataset, and architecture.
  26. **Production Readiness and Ease of Integration**
  27. All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVino (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
  28. <div align="center">
  29. <img src="./assets/SG_img/detection-demo.png" width="600px">
  30. </div>
  31. ### Documentation
  32. Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
  33. __________________________________________________________________________________________________________
  34. ### Table of Content:
  35. <!-- toc -->
  36. - [Getting Started](#getting-started)
  37. - [Quick Start Notebook](#quick-start-notebook)
  38. - [Walkthrough Notebook](#supergradients-walkthrough-notebook)
  39. - [Transfer Learning with SG Notebook](#transfer-learning-with-sg-notebook)
  40. - [Installation Methods](#installation-methods)
  41. - [Prerequisites](#prerequisites)
  42. - [Quick Installation of stable version](#quick-installation-of-stable-version)
  43. - [Installing from GitHub](#installing-from-github)
  44. - [Computer Vision Models' Pretrained Checkpoints](#computer-vision-models-pretrained-checkpoints)
  45. - [Pretrained Classification PyTorch Checkpoints](#pretrained-classification-pytorch-checkpoints)
  46. - [Pretrained Object Detection PyTorch Checkpoints](#pretrained-object-detection-pytorch-checkpoints)
  47. - [Pretrained Semantic Segmentation PyTorch Checkpoints](#pretrained-semantic-segmentation-pytorch-checkpoints)
  48. - [Contributing](#contributing)
  49. - [Citation](#citation)
  50. - [Community](#community)
  51. - [License](#license)
  52. <!-- tocstop -->
  53. ## Getting Started
  54. ### Quick Start Notebook
  55. Get started with our quick start notebook on Google Colab for a quick and easy start using free GPU hardware
  56. <table class="tfo-notebook-buttons" align="left">
  57. <td>
  58. <a target="_blank" href="https://colab.research.google.com/drive/12cURMPVQrvhgYle-wGmE2z8b_p90BdL0?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Quick Start in Google Colab</a>
  59. </td>
  60. <td>
  61. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  62. </td>
  63. <td>
  64. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  65. </td>
  66. </table>
  67. </br></br>
  68. ### SuperGradients Walkthrough Notebook
  69. Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
  70. <table class="tfo-notebook-buttons" align="left">
  71. <td>
  72. <a target="_blank" href="https://colab.research.google.com/drive/1smwh4EAgE8PwnCtwsdU8a9D9Ezfh6FQK?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Walkthrough in Google Colab</a>
  73. </td>
  74. <td>
  75. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_Walkthrough%20.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  76. </td>
  77. <td>
  78. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  79. </td>
  80. </table>
  81. </br></br>
  82. ### Transfer Learning with SG Notebook
  83. Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloV5nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
  84. <table class="tfo-notebook-buttons" align="left">
  85. <td>
  86. <a target="_blank" href="https://colab.research.google.com/drive/1ZR_cvy8tQB_fTZwB2SQxg3RfIVKxNxRO?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Transfer Learning in Google Colab</a>
  87. </td>
  88. <td>
  89. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/TransferLearningDetection.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  90. </td>
  91. <td>
  92. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  93. </td>
  94. </table>
  95. </br></br>
  96. ## Installation Methods
  97. ### Prerequisites
  98. General requirements:
  99. - Python 3.7, 3.8 or 3.9 installed.
  100. - torch>=1.9.0
  101. - https://pytorch.org/get-started/locally/
  102. - The python packages that are specified in requirements.txt;
  103. To train on nvidia GPUs:
  104. - [Nvidia CUDA Toolkit >= 11.2](https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu)
  105. - CuDNN >= 8.1.x
  106. - Nvidia Driver with CUDA >= 11.2 support (≥460.x)
  107. ### Quick Installation of stable version
  108. See in [PyPi](https://pypi.org/project/super-gradients/)
  109. ```bash
  110. pip install super-gradients
  111. ```
  112. That's it !
  113. ### Installing from GitHub
  114. ```bash
  115. pip install git+https://github.com/Deci-AI/super-gradients.git@stable
  116. ```
  117. ## Computer Vision Models' Pretrained Checkpoints
  118. ### Pretrained Classification PyTorch Checkpoints
  119. | Model | Dataset | Resolution | Top-1 | Top-5 | Latency b1<sub>T4</sub> | Throughput b1<sub>T4</sub> |
  120. |-------------------- |------ | ---------- |----------- |------ | -------- | :------: |
  121. | EfficientNet B0 | ImageNet |224x224 | 77.62 | 93.49 |**1.16ms** |**862fps** |
  122. | RegNetY200 | ImageNet |224x224 | 70.88 | 89.35 |**1.07ms**|**928.3fps** |
  123. | RegNetY400 | ImageNet |224x224 | 74.74 | 91.46 |**1.22ms** |**816.5fps** |
  124. | RegNetY600 | ImageNet |224x224 | 76.18 | 92.34 |**1.19ms** |**838.5fps** |
  125. | RegNetY800 | ImageNet |224x224 | 77.07 | 93.26 |**1.18ms** |**841.4fps** |
  126. | ResNet18 | ImageNet |224x224 | 70.6 | 89.64 |**0.599ms** |**1669fps** |
  127. | ResNet34 | ImageNet |224x224 | 74.13 | 91.7 |**0.89ms** |**1123fps** |
  128. | ResNet50 | ImageNet |224x224 | 76.3 | 93.0 |**0.94ms** |**1063fps** |
  129. | MobileNetV3_large-150 epochs | ImageNet |224x224 | 73.79 | 91.54 |**0.87ms** |**1149fps** |
  130. | MobileNetV3_large-300 epochs | ImageNet |224x224 | 74.52 | 91.92 |**0.87ms** |**1149fps** |
  131. | MobileNetV3_small | ImageNet |224x224 |67.45 | 87.47 |**0.75ms** |**1333fps** |
  132. | MobileNetV2_w1 | ImageNet |224x224 | 73.08 | 91.1 |**0.58ms** |**1724fps** |
  133. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1
  134. ### Pretrained Object Detection PyTorch Checkpoints
  135. | Model | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency b1<sub>T4</sub> | Throughput b64<sub>T4</sub> |
  136. |--------------------- |------ | ---------- |------ | -------- | :------: |
  137. | YOLOv5 nano | COCO |640x640 |27.7 |**6.55ms** |**177.62fps** |
  138. | YOLOv5 small | COCO |640x640 |37.3 |**7.13ms** |**159.44fps** |
  139. | YOLOv5 medium | COCO |640x640 |45.2 |**8.95ms** |**121.78fps** |
  140. | YOLOv5 large | COCO |640x640 |48.0 |**11.49ms** |**95.99fps** |
  141. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency) and batch size 64 (througput)
  142. ### Pretrained Semantic Segmentation PyTorch Checkpoints
  143. | Model | Dataset | Resolution | mIoU | Latency b1<sub>T4</sub> | Throughput b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO |
  144. |--------------------- |------ | ---------- | ------ | -------- | -------- | :------: |
  145. | DDRNet23 | Cityscapes |1024x2048 |78.65 |**7.62ms** |**131.3fps** |**25.94ms**|
  146. | DDRNet23 slim | Cityscapes |1024x2048 |76.6 |**3.56ms** |**280.5fps** |**22.80ms**|
  147. | STDC1-Seg50 | Cityscapes | 512x1024 |74.36 |**2.83ms** |**353.3fps** |**12.57ms**|
  148. | STDC1-Seg75 | Cityscapes | 768x1536 |76.87 |**5.71ms** |**175.1fps** |**26.70ms**|
  149. | STDC2-Seg50 | Cityscapes | 512x1024 |75.27 |**3.74ms** |**267.2fps** |**13.89ms**
  150. | STDC2-Seg75 | Cityscapes | 768x1536 |78.93 |**7.35ms** |**135.9fps** |**28.18ms**|
  151. | ShelfNet_LW_34 | COCO Segmentation (21 classes from PASCAL including background) |512x512 |65.1 |**-** |**-** |**-** |
  152. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
  153. ## Contributing
  154. To learn about making a contribution to SuperGradients, please see our [Contribution page](CONTRIBUTING.md).
  155. Our awesome contributors:
  156. <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
  157. <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
  158. </a>
  159. <br/>Made with [contrib.rocks](https://contrib.rocks).
  160. ## Citation
  161. If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
  162. ## Community
  163. If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
  164. or want to file a bug or issue report, we would love to welcome you aboard!
  165. * Slack is the place to be and ask questions about SuperGradients and get support. [Click here to join our Slack](
  166. https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
  167. * To report a bug, [file an issue](https://github.com/Deci-AI/super-gradients/issues) on GitHub.
  168. * You can also join the [community mailing list](https://deci.ai/resources/blog/)
  169. to ask questions about the project and receive announcements.
  170. * For a shorth meeting with SuperGradients PM, use this [link](https://calendly.com/ofer-baratz-deci/15min) and choose your prefered time.
  171. ## License
  172. This project is released under the [Apache 2.0 license](LICENSE).
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...