Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

ssd_utils.html 37 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.utils.ssd_utils &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
  10. <!--[if lt IE 9]>
  11. <script src="../../../../_static/js/html5shiv.min.js"></script>
  12. <![endif]-->
  13. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  14. <script src="../../../../_static/jquery.js"></script>
  15. <script src="../../../../_static/underscore.js"></script>
  16. <script src="../../../../_static/doctools.js"></script>
  17. <script src="../../../../_static/js/theme.js"></script>
  18. <link rel="index" title="Index" href="../../../../genindex.html" />
  19. <link rel="search" title="Search" href="../../../../search.html" />
  20. </head>
  21. <body class="wy-body-for-nav">
  22. <div class="wy-grid-for-nav">
  23. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  24. <div class="wy-side-scroll">
  25. <div class="wy-side-nav-search" >
  26. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  27. </a>
  28. <div role="search">
  29. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  30. <input type="text" name="q" placeholder="Search docs" />
  31. <input type="hidden" name="check_keywords" value="yes" />
  32. <input type="hidden" name="area" value="default" />
  33. </form>
  34. </div>
  35. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  36. <p class="caption"><span class="caption-text">SuperGradients</span></p>
  37. <ul>
  38. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
  40. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
  41. </ul>
  42. </div>
  43. </div>
  44. </nav>
  45. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  46. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  47. <a href="../../../../index.html">SuperGradients</a>
  48. </nav>
  49. <div class="wy-nav-content">
  50. <div class="rst-content">
  51. <div role="navigation" aria-label="Page navigation">
  52. <ul class="wy-breadcrumbs">
  53. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  54. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  55. <li>super_gradients.training.utils.ssd_utils</li>
  56. <li class="wy-breadcrumbs-aside">
  57. </li>
  58. </ul>
  59. <hr/>
  60. </div>
  61. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  62. <div itemprop="articleBody">
  63. <h1>Source code for super_gradients.training.utils.ssd_utils</h1><div class="highlight"><pre>
  64. <span></span><span class="kn">import</span> <span class="nn">itertools</span>
  65. <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">sqrt</span>
  66. <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  67. <span class="kn">import</span> <span class="nn">torch</span>
  68. <span class="kn">from</span> <span class="nn">torch.nn</span> <span class="kn">import</span> <span class="n">functional</span> <span class="k">as</span> <span class="n">F</span>
  69. <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">non_max_suppression</span><span class="p">,</span> <span class="n">NMS_Type</span><span class="p">,</span> \
  70. <span class="n">matrix_non_max_suppression</span><span class="p">,</span> <span class="n">DetectionPostPredictionCallback</span>
  71. <div class="viewcode-block" id="DefaultBoxes"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.DefaultBoxes">[docs]</a><span class="k">class</span> <span class="nc">DefaultBoxes</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
  72. <span class="sd">&quot;&quot;&quot;</span>
  73. <span class="sd"> Default Boxes, (aka: anchor boxes or priors boxes) used by SSD model</span>
  74. <span class="sd"> &quot;&quot;&quot;</span>
  75. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fig_size</span><span class="p">,</span> <span class="n">feat_size</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="n">scales</span><span class="p">,</span> <span class="n">aspect_ratios</span><span class="p">,</span> <span class="n">scale_xy</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">scale_wh</span><span class="o">=</span><span class="mf">0.2</span><span class="p">):</span>
  76. <span class="bp">self</span><span class="o">.</span><span class="n">feat_size</span> <span class="o">=</span> <span class="n">feat_size</span>
  77. <span class="bp">self</span><span class="o">.</span><span class="n">fig_size</span> <span class="o">=</span> <span class="n">fig_size</span>
  78. <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy_</span> <span class="o">=</span> <span class="n">scale_xy</span>
  79. <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh_</span> <span class="o">=</span> <span class="n">scale_wh</span>
  80. <span class="c1"># According to https://github.com/weiliu89/caffe</span>
  81. <span class="c1"># Calculation method slightly different from paper</span>
  82. <span class="bp">self</span><span class="o">.</span><span class="n">steps</span> <span class="o">=</span> <span class="n">steps</span>
  83. <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="n">scales</span>
  84. <span class="n">fk</span> <span class="o">=</span> <span class="n">fig_size</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">steps</span><span class="p">)</span>
  85. <span class="bp">self</span><span class="o">.</span><span class="n">aspect_ratios</span> <span class="o">=</span> <span class="n">aspect_ratios</span>
  86. <span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span> <span class="o">=</span> <span class="p">[]</span>
  87. <span class="c1"># size of feature and number of feature</span>
  88. <span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">sfeat</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">feat_size</span><span class="p">):</span>
  89. <span class="n">sk1</span> <span class="o">=</span> <span class="n">scales</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span> <span class="o">/</span> <span class="n">fig_size</span>
  90. <span class="n">sk2</span> <span class="o">=</span> <span class="n">scales</span><span class="p">[</span><span class="n">idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">/</span> <span class="n">fig_size</span>
  91. <span class="n">sk3</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">sk1</span> <span class="o">*</span> <span class="n">sk2</span><span class="p">)</span>
  92. <span class="n">all_sizes</span> <span class="o">=</span> <span class="p">[(</span><span class="n">sk1</span><span class="p">,</span> <span class="n">sk1</span><span class="p">),</span> <span class="p">(</span><span class="n">sk3</span><span class="p">,</span> <span class="n">sk3</span><span class="p">)]</span>
  93. <span class="k">for</span> <span class="n">alpha</span> <span class="ow">in</span> <span class="n">aspect_ratios</span><span class="p">[</span><span class="n">idx</span><span class="p">]:</span>
  94. <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">sk1</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">alpha</span><span class="p">),</span> <span class="n">sk1</span> <span class="o">/</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">alpha</span><span class="p">)</span>
  95. <span class="n">all_sizes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">))</span>
  96. <span class="n">all_sizes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">h</span><span class="p">,</span> <span class="n">w</span><span class="p">))</span>
  97. <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="ow">in</span> <span class="n">all_sizes</span><span class="p">:</span>
  98. <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">product</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">sfeat</span><span class="p">),</span> <span class="n">repeat</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
  99. <span class="n">cx</span><span class="p">,</span> <span class="n">cy</span> <span class="o">=</span> <span class="p">(</span><span class="n">j</span> <span class="o">+</span> <span class="mf">0.5</span><span class="p">)</span> <span class="o">/</span> <span class="n">fk</span><span class="p">[</span><span class="n">idx</span><span class="p">],</span> <span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mf">0.5</span><span class="p">)</span> <span class="o">/</span> <span class="n">fk</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
  100. <span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">cx</span><span class="p">,</span> <span class="n">cy</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">))</span>
  101. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span>
  102. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  103. <span class="c1"># For IoU calculation</span>
  104. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span>
  105. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span>
  106. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span>
  107. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span>
  108. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span>
  109. <span class="nd">@property</span>
  110. <span class="k">def</span> <span class="nf">scale_xy</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  111. <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy_</span>
  112. <span class="nd">@property</span>
  113. <span class="k">def</span> <span class="nf">scale_wh</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  114. <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh_</span>
  115. <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">order</span><span class="o">=</span><span class="s2">&quot;xyxy&quot;</span><span class="p">):</span>
  116. <span class="k">if</span> <span class="n">order</span> <span class="o">==</span> <span class="s2">&quot;xyxy&quot;</span><span class="p">:</span>
  117. <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span>
  118. <span class="k">if</span> <span class="n">order</span> <span class="o">==</span> <span class="s2">&quot;xywh&quot;</span><span class="p">:</span>
  119. <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span>
  120. <div class="viewcode-block" id="DefaultBoxes.dboxes300_coco"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.DefaultBoxes.dboxes300_coco">[docs]</a> <span class="nd">@staticmethod</span>
  121. <span class="k">def</span> <span class="nf">dboxes300_coco</span><span class="p">():</span>
  122. <span class="n">figsize</span> <span class="o">=</span> <span class="mi">300</span>
  123. <span class="n">feat_size</span> <span class="o">=</span> <span class="p">[</span><span class="mi">38</span><span class="p">,</span> <span class="mi">19</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
  124. <span class="n">steps</span> <span class="o">=</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">100</span><span class="p">,</span> <span class="mi">300</span><span class="p">]</span>
  125. <span class="c1"># use the scales here: https://github.com/amdegroot/ssd.pytorch/blob/master/data/config.py</span>
  126. <span class="n">scales</span> <span class="o">=</span> <span class="p">[</span><span class="mi">21</span><span class="p">,</span> <span class="mi">45</span><span class="p">,</span> <span class="mi">99</span><span class="p">,</span> <span class="mi">153</span><span class="p">,</span> <span class="mi">207</span><span class="p">,</span> <span class="mi">261</span><span class="p">,</span> <span class="mi">315</span><span class="p">]</span>
  127. <span class="n">aspect_ratios</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">]]</span>
  128. <span class="k">return</span> <span class="n">DefaultBoxes</span><span class="p">(</span><span class="n">figsize</span><span class="p">,</span> <span class="n">feat_size</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="n">scales</span><span class="p">,</span> <span class="n">aspect_ratios</span><span class="p">)</span></div>
  129. <div class="viewcode-block" id="DefaultBoxes.dboxes300_coco_from19"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.DefaultBoxes.dboxes300_coco_from19">[docs]</a> <span class="nd">@staticmethod</span>
  130. <span class="k">def</span> <span class="nf">dboxes300_coco_from19</span><span class="p">():</span>
  131. <span class="sd">&quot;&quot;&quot;</span>
  132. <span class="sd"> This dbox configuration is a bit different from the original dboxes300_coco</span>
  133. <span class="sd"> It is suitable for a network taking the first skip connection from a 19x19 layer (instead of 38x38 in the</span>
  134. <span class="sd"> original paper).</span>
  135. <span class="sd"> This offers less coverage for small objects but more aspect ratios options to larger objects (the original</span>
  136. <span class="sd"> paper supports object starting from size 21 pixels, while this config support objects starting from 60 pixels)</span>
  137. <span class="sd"> &quot;&quot;&quot;</span>
  138. <span class="c1"># https://github.com/qfgaohao/pytorch-ssd/blob/f61ab424d09bf3d4bb3925693579ac0a92541b0d/vision/ssd/config/mobilenetv1_ssd_config.py</span>
  139. <span class="n">figsize</span> <span class="o">=</span> <span class="mi">300</span>
  140. <span class="n">feat_size</span> <span class="o">=</span> <span class="p">[</span><span class="mi">19</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
  141. <span class="n">steps</span> <span class="o">=</span> <span class="p">[</span><span class="mi">16</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">100</span><span class="p">,</span> <span class="mi">150</span><span class="p">,</span> <span class="mi">300</span><span class="p">]</span>
  142. <span class="n">scales</span> <span class="o">=</span> <span class="p">[</span><span class="mi">60</span><span class="p">,</span> <span class="mi">105</span><span class="p">,</span> <span class="mi">150</span><span class="p">,</span> <span class="mi">195</span><span class="p">,</span> <span class="mi">240</span><span class="p">,</span> <span class="mi">285</span><span class="p">,</span> <span class="mi">330</span><span class="p">]</span>
  143. <span class="n">aspect_ratios</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]]</span>
  144. <span class="k">return</span> <span class="n">DefaultBoxes</span><span class="p">(</span><span class="n">figsize</span><span class="p">,</span> <span class="n">feat_size</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="n">scales</span><span class="p">,</span> <span class="n">aspect_ratios</span><span class="p">)</span></div>
  145. <div class="viewcode-block" id="DefaultBoxes.dboxes256_coco"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.DefaultBoxes.dboxes256_coco">[docs]</a> <span class="nd">@staticmethod</span>
  146. <span class="k">def</span> <span class="nf">dboxes256_coco</span><span class="p">():</span>
  147. <span class="n">figsize</span> <span class="o">=</span> <span class="mi">256</span>
  148. <span class="n">feat_size</span> <span class="o">=</span> <span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
  149. <span class="n">steps</span> <span class="o">=</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">256</span><span class="p">]</span>
  150. <span class="c1"># use the scales here: https://github.com/amdegroot/ssd.pytorch/blob/master/data/config.py</span>
  151. <span class="n">scales</span> <span class="o">=</span> <span class="p">[</span><span class="mi">18</span><span class="p">,</span> <span class="mi">38</span><span class="p">,</span> <span class="mi">84</span><span class="p">,</span> <span class="mi">131</span><span class="p">,</span> <span class="mi">1177</span><span class="p">,</span> <span class="mi">223</span><span class="p">,</span> <span class="mi">269</span><span class="p">]</span>
  152. <span class="n">aspect_ratios</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">]]</span>
  153. <span class="k">return</span> <span class="n">DefaultBoxes</span><span class="p">(</span><span class="n">figsize</span><span class="p">,</span> <span class="n">feat_size</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="n">scales</span><span class="p">,</span> <span class="n">aspect_ratios</span><span class="p">)</span></div></div>
  154. <div class="viewcode-block" id="SSDPostPredictCallback"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.SSDPostPredictCallback">[docs]</a><span class="k">class</span> <span class="nc">SSDPostPredictCallback</span><span class="p">(</span><span class="n">DetectionPostPredictionCallback</span><span class="p">):</span>
  155. <span class="sd">&quot;&quot;&quot;</span>
  156. <span class="sd"> post prediction callback module to convert and filter predictions coming from the SSD net to a format</span>
  157. <span class="sd"> used by all other detection models</span>
  158. <span class="sd"> &quot;&quot;&quot;</span>
  159. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">conf</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> <span class="n">iou</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.45</span><span class="p">,</span> <span class="n">classes</span><span class="p">:</span> <span class="nb">list</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">max_predictions</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">300</span><span class="p">,</span>
  160. <span class="n">nms_type</span><span class="p">:</span> <span class="n">NMS_Type</span> <span class="o">=</span> <span class="n">NMS_Type</span><span class="o">.</span><span class="n">ITERATIVE</span><span class="p">,</span>
  161. <span class="n">dboxes</span><span class="p">:</span> <span class="n">DefaultBoxes</span> <span class="o">=</span> <span class="n">DefaultBoxes</span><span class="o">.</span><span class="n">dboxes300_coco</span><span class="p">(),</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
  162. <span class="sd">&quot;&quot;&quot;</span>
  163. <span class="sd"> :param conf: confidence threshold</span>
  164. <span class="sd"> :param iou: IoU threshold</span>
  165. <span class="sd"> :param classes: (optional list) filter by class</span>
  166. <span class="sd"> :param nms_type: the type of nms to use (iterative or matrix)</span>
  167. <span class="sd"> &quot;&quot;&quot;</span>
  168. <span class="nb">super</span><span class="p">(</span><span class="n">SSDPostPredictCallback</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
  169. <span class="bp">self</span><span class="o">.</span><span class="n">conf</span> <span class="o">=</span> <span class="n">conf</span>
  170. <span class="bp">self</span><span class="o">.</span><span class="n">iou</span> <span class="o">=</span> <span class="n">iou</span>
  171. <span class="bp">self</span><span class="o">.</span><span class="n">nms_type</span> <span class="o">=</span> <span class="n">nms_type</span>
  172. <span class="bp">self</span><span class="o">.</span><span class="n">classes</span> <span class="o">=</span> <span class="n">classes</span>
  173. <span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span> <span class="o">=</span> <span class="n">max_predictions</span>
  174. <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xywh</span> <span class="o">=</span> <span class="n">dboxes</span><span class="p">(</span><span class="s1">&#39;xywh&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
  175. <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy</span> <span class="o">=</span> <span class="n">dboxes</span><span class="o">.</span><span class="n">scale_xy</span>
  176. <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh</span> <span class="o">=</span> <span class="n">dboxes</span><span class="o">.</span><span class="n">scale_wh</span>
  177. <span class="bp">self</span><span class="o">.</span><span class="n">img_size</span> <span class="o">=</span> <span class="n">dboxes</span><span class="o">.</span><span class="n">fig_size</span>
  178. <div class="viewcode-block" id="SSDPostPredictCallback.forward"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.SSDPostPredictCallback.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
  179. <span class="n">bboxes_in</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
  180. <span class="n">scores_in</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
  181. <span class="n">bboxes_in</span> <span class="o">=</span> <span class="n">bboxes_in</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  182. <span class="n">scores_in</span> <span class="o">=</span> <span class="n">scores_in</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  183. <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy</span>
  184. <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">2</span><span class="p">:]</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh</span>
  185. <span class="c1"># CONVERT RELATIVE LOCATIONS INTO ABSOLUTE LOCATION (OUTPUT LOCATIONS ARE RELATIVE TO THE DBOXES)</span>
  186. <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xywh</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:]</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xywh</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span>
  187. <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">2</span><span class="p">:]</span> <span class="o">=</span> <span class="n">bboxes_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">2</span><span class="p">:]</span><span class="o">.</span><span class="n">exp</span><span class="p">()</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xywh</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:]</span>
  188. <span class="n">scores_in</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">scores_in</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># TODO softmax without first item?</span>
  189. <span class="c1"># REPLACE THE CONFIDENCE OF CLASS NONE WITH OBJECT CONFIDENCE</span>
  190. <span class="c1"># SSD DOES NOT OUTPUT OBJECT CONFIDENCE, REQUIRED FOR THE NMS</span>
  191. <span class="n">scores_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">scores_in</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">1</span><span class="p">:],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
  192. <span class="n">bboxes_in</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">img_size</span>
  193. <span class="n">nms_input</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">bboxes_in</span><span class="p">,</span> <span class="n">scores_in</span><span class="p">),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
  194. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">nms_type</span> <span class="o">==</span> <span class="n">NMS_Type</span><span class="o">.</span><span class="n">ITERATIVE</span><span class="p">:</span>
  195. <span class="n">nms_res</span> <span class="o">=</span> <span class="n">non_max_suppression</span><span class="p">(</span><span class="n">nms_input</span><span class="p">,</span> <span class="n">conf_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">,</span> <span class="n">iou_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">iou</span><span class="p">,</span>
  196. <span class="n">classes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">)</span>
  197. <span class="k">else</span><span class="p">:</span>
  198. <span class="n">nms_res</span> <span class="o">=</span> <span class="n">matrix_non_max_suppression</span><span class="p">(</span><span class="n">nms_input</span><span class="p">,</span> <span class="n">conf_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">,</span>
  199. <span class="n">max_num_of_detections</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span><span class="p">)</span>
  200. <span class="c1"># NMS OUTPUT A 0-BASED CLASS LABEL, BUT SSD WORKS WITH 1-BASED CLASS LABEL</span>
  201. <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">nms_res</span><span class="p">:</span>
  202. <span class="k">if</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
  203. <span class="n">t</span><span class="p">[:,</span> <span class="mi">5</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
  204. <span class="k">return</span> <span class="n">nms_res</span></div></div>
  205. </pre></div>
  206. </div>
  207. </div>
  208. <footer>
  209. <hr/>
  210. <div role="contentinfo">
  211. <p>&#169; Copyright 2021, SuperGradients team.</p>
  212. </div>
  213. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  214. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  215. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  216. </footer>
  217. </div>
  218. </div>
  219. </section>
  220. </div>
  221. <script>
  222. jQuery(function () {
  223. SphinxRtdTheme.Navigation.enable(true);
  224. });
  225. </script>
  226. </body>
  227. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...