1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.utils.optimizers.rmsprop_tf — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../../" id="documentation_options" src="../../../../../_static/documentation_options.js"></script>
- <script src="../../../../../_static/jquery.js"></script>
- <script src="../../../../../_static/underscore.js"></script>
- <script src="../../../../../_static/doctools.js"></script>
- <script src="../../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html">SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../super_gradients.common.html">Common</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../super_gradients.training.html">Training</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.utils.optimizers.rmsprop_tf</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.utils.optimizers.rmsprop_tf</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">torch.optim</span> <span class="kn">import</span> <span class="n">Optimizer</span>
- <span class="sd">"""</span>
- <span class="sd">This implementation is taken from timm's github:</span>
- <span class="sd">https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/rmsprop_tf.py</span>
- <span class="sd">"""</span>
- <span class="sd">""" RMSProp modified to behave like Tensorflow impl</span>
- <span class="sd">Originally cut & paste from PyTorch RMSProp</span>
- <span class="sd">https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py</span>
- <span class="sd">Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE</span>
- <span class="sd">Modifications Copyright 2020 Ross Wightman</span>
- <span class="sd">"""</span>
- <div class="viewcode-block" id="RMSpropTF"><a class="viewcode-back" href="../../../../../super_gradients.training.utils.optimizers.html#super_gradients.training.utils.optimizers.rmsprop_tf.RMSpropTF">[docs]</a><span class="k">class</span> <span class="nc">RMSpropTF</span><span class="p">(</span><span class="n">Optimizer</span><span class="p">):</span>
- <span class="sd">"""Implements RMSprop algorithm (TensorFlow style epsilon)</span>
- <span class="sd"> NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt</span>
- <span class="sd"> and a few other modifications to closer match Tensorflow for matching hyper-params.</span>
- <span class="sd"> Noteworthy changes include:</span>
- <span class="sd"> 1. Epsilon applied inside square-root</span>
- <span class="sd"> 2. square_avg initialized to ones</span>
- <span class="sd"> 3. LR scaling of update accumulated in momentum buffer</span>
- <span class="sd"> Proposed by G. Hinton in his</span>
- <span class="sd"> `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.</span>
- <span class="sd"> The centered version first appears in `Generating Sequences</span>
- <span class="sd"> With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_."""</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mf">1e-2</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.9</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-10</span><span class="p">,</span> <span class="n">weight_decay</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">centered</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
- <span class="n">decoupled_decay</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">lr_in_momentum</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
- <span class="sd">"""RMSprop optimizer that follows the tf's RMSprop characteristics</span>
- <span class="sd"> :param params (iterable): iterable of parameters to optimize or dicts defining parameter groups</span>
- <span class="sd"> :param lr (float, optional): learning rate</span>
- <span class="sd"> :param momentum (float, optional): momentum factor</span>
- <span class="sd"> :param alpha (float, optional): smoothing (decay) constant</span>
- <span class="sd"> :param eps (float, optional): term added to the denominator to improve numerical stability</span>
- <span class="sd"> :param centered (bool, optional) : if ``True``, compute the centered RMSProp, the gradient is normalized by an</span>
- <span class="sd"> estimation of its variance</span>
- <span class="sd"> :param weight_decay (float, optional): weight decay (L2 penalty)</span>
- <span class="sd"> :param decoupled_decay (bool, optional): decoupled weight decay as per https://arxiv.org/abs/1711.05101</span>
- <span class="sd"> :param lr_in_momentum (bool, optional): learning rate scaling is included in the momentum buffer update as per</span>
- <span class="sd"> defaults in Tensorflow</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">lr</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid learning rate: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">lr</span><span class="p">))</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">eps</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid epsilon value: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">eps</span><span class="p">))</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">momentum</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid momentum value: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">momentum</span><span class="p">))</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">weight_decay</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid weight_decay value: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">weight_decay</span><span class="p">))</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="mf">0.0</span> <span class="o"><=</span> <span class="n">alpha</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid alpha value: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">alpha</span><span class="p">))</span>
- <span class="n">defaults</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">lr</span><span class="o">=</span><span class="n">lr</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="n">momentum</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="n">alpha</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">centered</span><span class="o">=</span><span class="n">centered</span><span class="p">,</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">weight_decay</span><span class="p">,</span>
- <span class="n">decoupled_decay</span><span class="o">=</span><span class="n">decoupled_decay</span><span class="p">,</span> <span class="n">lr_in_momentum</span><span class="o">=</span><span class="n">lr_in_momentum</span><span class="p">)</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RMSpropTF</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">__setstate__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RMSpropTF</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">__setstate__</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">group</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
- <span class="n">group</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s1">'momentum'</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
- <span class="n">group</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s1">'centered'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
- <div class="viewcode-block" id="RMSpropTF.step"><a class="viewcode-back" href="../../../../../super_gradients.training.utils.optimizers.html#super_gradients.training.utils.optimizers.rmsprop_tf.RMSpropTF.step">[docs]</a> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">closure</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="c1"># noqa: C901</span>
- <span class="sd">"""Performs a single optimization step.</span>
- <span class="sd"> Arguments:</span>
- <span class="sd"> closure (callable, optional): A closure that reevaluates the model</span>
- <span class="sd"> and returns the loss.</span>
- <span class="sd"> """</span>
- <span class="n">loss</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="k">if</span> <span class="n">closure</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">loss</span> <span class="o">=</span> <span class="n">closure</span><span class="p">()</span>
- <span class="k">for</span> <span class="n">group</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">group</span><span class="p">[</span><span class="s1">'params'</span><span class="p">]:</span>
- <span class="k">if</span> <span class="n">p</span><span class="o">.</span><span class="n">grad</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">continue</span>
- <span class="n">grad</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">data</span>
- <span class="k">if</span> <span class="n">grad</span><span class="o">.</span><span class="n">is_sparse</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s1">'RMSprop does not support sparse gradients'</span><span class="p">)</span>
- <span class="n">state</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state</span><span class="p">[</span><span class="n">p</span><span class="p">]</span>
- <span class="c1"># State initialization</span>
- <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">state</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="n">state</span><span class="p">[</span><span class="s1">'square_avg'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">)</span> <span class="c1"># PyTorch inits to zero</span>
- <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'momentum'</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">state</span><span class="p">[</span><span class="s1">'momentum_buffer'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'centered'</span><span class="p">]:</span>
- <span class="n">state</span><span class="p">[</span><span class="s1">'grad_avg'</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
- <span class="n">square_avg</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">'square_avg'</span><span class="p">]</span>
- <span class="n">one_minus_alpha</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">-</span> <span class="n">group</span><span class="p">[</span><span class="s1">'alpha'</span><span class="p">]</span>
- <span class="n">state</span><span class="p">[</span><span class="s1">'step'</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">if</span> <span class="s1">'decoupled_decay'</span> <span class="ow">in</span> <span class="n">group</span> <span class="ow">and</span> <span class="n">group</span><span class="p">[</span><span class="s1">'decoupled_decay'</span><span class="p">]:</span>
- <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="o">-</span><span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">],</span> <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">grad</span> <span class="o">=</span> <span class="n">grad</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'weight_decay'</span><span class="p">],</span> <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
- <span class="c1"># Tensorflow order of ops for updating squared avg</span>
- <span class="n">square_avg</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">one_minus_alpha</span><span class="p">,</span> <span class="n">grad</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="n">square_avg</span><span class="p">)</span>
- <span class="c1"># square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) # PyTorch original</span>
- <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'centered'</span><span class="p">]:</span>
- <span class="n">grad_avg</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">'grad_avg'</span><span class="p">]</span>
- <span class="n">grad_avg</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">one_minus_alpha</span><span class="p">,</span> <span class="n">grad</span> <span class="o">-</span> <span class="n">grad_avg</span><span class="p">)</span>
- <span class="c1"># grad_avg.mul_(alpha).add_(1 - alpha, grad) # PyTorch original</span>
- <span class="n">avg</span> <span class="o">=</span> <span class="n">square_avg</span><span class="o">.</span><span class="n">addcmul</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">grad_avg</span><span class="p">,</span> <span class="n">grad_avg</span><span class="p">)</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'eps'</span><span class="p">])</span><span class="o">.</span><span class="n">sqrt_</span><span class="p">()</span> <span class="c1"># eps moved in sqrt</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">avg</span> <span class="o">=</span> <span class="n">square_avg</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'eps'</span><span class="p">])</span><span class="o">.</span><span class="n">sqrt_</span><span class="p">()</span> <span class="c1"># eps moved in sqrt</span>
- <span class="k">if</span> <span class="n">group</span><span class="p">[</span><span class="s1">'momentum'</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">buf</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">'momentum_buffer'</span><span class="p">]</span>
- <span class="c1"># Tensorflow accumulates the LR scaling in the momentum buffer</span>
- <span class="k">if</span> <span class="s1">'lr_in_momentum'</span> <span class="ow">in</span> <span class="n">group</span> <span class="ow">and</span> <span class="n">group</span><span class="p">[</span><span class="s1">'lr_in_momentum'</span><span class="p">]:</span>
- <span class="n">buf</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'momentum'</span><span class="p">])</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">],</span> <span class="n">grad</span><span class="p">,</span> <span class="n">avg</span><span class="p">)</span>
- <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="o">-</span><span class="n">buf</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="c1"># PyTorch scales the param update by LR</span>
- <span class="n">buf</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">'momentum'</span><span class="p">])</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">grad</span><span class="p">,</span> <span class="n">avg</span><span class="p">)</span>
- <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="o">-</span><span class="n">group</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">],</span> <span class="n">buf</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">p</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="o">-</span><span class="n">group</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">],</span> <span class="n">grad</span><span class="p">,</span> <span class="n">avg</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">loss</span></div></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|