Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

coco2017_yolo_nas_pose_n.yaml 2.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  1. # YoloNASPose training on COCO2017 Dataset
  2. # All YoloNASPose models trained in 640x640 resolution
  3. #
  4. # Instructions:
  5. # 0. Have super-gradients installed (pip install super-gradients==3.3 or clone the repo and `pip install -e .`)
  6. # 1. Make sure that the data is stored folder specified at `dataset_params.dataset_dir` (Default is /data/coco) or
  7. # add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below
  8. # 2. Run the command to start the training:
  9. # yolo_nas_pose_n: python -m super_gradients.train_from_recipe --config-name=coco2017_yolo_nas_pose_n
  10. # yolo_nas_pose_s: python -m super_gradients.train_from_recipe --config-name=coco2017_yolo_nas_pose_s
  11. # yolo_nas_pose_m: python -m super_gradients.train_from_recipe --config-name=coco2017_yolo_nas_pose_m
  12. # yolo_nas_pose_l: python -m super_gradients.train_from_recipe --config-name=coco2017_yolo_nas_pose_l
  13. #
  14. # Training times and accuracies (mAP@0.5-0.95 (COCO API, confidence 0.01, IoU threshold 0.7, test on original resolution):
  15. # yolo_nas_pose_n: 93h on 8 NVIDIA GeForce RTX 3090, AP: 59.68 (val)
  16. # yolo_nas_pose_s: 52h on 8 NVIDIA GeForce RTX 3090, AP: 64.15 (val)
  17. # yolo_nas_pose_m: 57h on 8 NVIDIA GeForce RTX 3090, AP: 67.87 (val)
  18. # yolo_nas_pose_l: 80h on 8 NVIDIA GeForce RTX 3090, AP: 68.24 (val)
  19. #
  20. # Offline evaluation using COCOEval for N variant:
  21. # Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.597
  22. # Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.832
  23. # Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.657
  24. # Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.540
  25. # Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.685
  26. # Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.656
  27. # Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.879
  28. # Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.713
  29. # Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.598
  30. # Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.738
  31. defaults:
  32. - training_hyperparams: coco2017_yolo_nas_pose_train_params
  33. - dataset_params: coco_pose_estimation_yolo_nas_mosaic_dataset_params
  34. - arch_params: yolo_nas_pose_n_arch_params
  35. - checkpoint_params: default_checkpoint_params
  36. - _self_
  37. - variable_setup
  38. architecture: yolo_nas_pose_n
  39. multi_gpu: DDP
  40. num_gpus: 8
  41. experiment_suffix: ""
  42. experiment_name: coco2017_${architecture}_${experiment_suffix}_${dataset_params.dataset_params_suffix}
  43. arch_params:
  44. num_classes: ${dataset_params.num_joints}
  45. dataset_params:
  46. mosaic_prob: 0.5
  47. train_dataloader_params:
  48. batch_size: 60
  49. val_dataloader_params:
  50. batch_size: 60
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...