1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
- import unittest
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils.callbacks import TestLRCallback
- class LRCooldownTest(unittest.TestCase):
- def test_lr_cooldown_with_lr_scheduling(self):
- # Define Model
- net = LeNet()
- trainer = Trainer("lr_warmup_test")
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {
- "max_epochs": 7,
- "cosine_final_lr_ratio": 0.2,
- "lr_mode": "cosine",
- "lr_cooldown_epochs": 2,
- "lr_warmup_epochs": 3,
- "initial_lr": 1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": False,
- "phase_callbacks": phase_callbacks,
- }
- expected_lrs = [0.25, 0.5, 0.75, 0.9236067977499791, 0.4763932022500211, 0.4763932022500211, 0.4763932022500211]
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(dataset_size=5, batch_size=4),
- valid_loader=classification_test_dataloader(dataset_size=5, batch_size=4),
- )
- # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
- # THE LRS AFTER THE UPDATE
- self.assertListEqual(lrs, expected_lrs)
|