1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
- import unittest
- from super_gradients.common.object_names import Models
- from super_gradients.training import models
- from super_gradients import Trainer
- import torch
- from torch.utils.data import TensorDataset, DataLoader
- from super_gradients.training.metrics import Accuracy
- class InitializeWithDataloadersTest(unittest.TestCase):
- def setUp(self):
- self.testcase_classes = [0, 1, 2, 3, 4]
- train_size, valid_size, test_size = 160, 20, 20
- channels, width, height = 3, 224, 224
- inp = torch.randn((train_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(train_size,))
- self.testcase_trainloader = DataLoader(TensorDataset(inp, label))
- inp = torch.randn((valid_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(valid_size,))
- self.testcase_validloader = DataLoader(TensorDataset(inp, label))
- inp = torch.randn((test_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(test_size,))
- self.testcase_testloader = DataLoader(TensorDataset(inp, label))
- def test_train_with_dataloaders(self):
- trainer = Trainer(experiment_name="test_name")
- model = models.get(Models.RESNET18, num_classes=5)
- trainer.train(
- model=model,
- training_params={
- "max_epochs": 2,
- "lr_updates": [5, 6, 12],
- "lr_decay_factor": 0.01,
- "lr_mode": "step",
- "initial_lr": 0.01,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 1e-5, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- },
- train_loader=self.testcase_trainloader,
- valid_loader=self.testcase_validloader,
- )
- self.assertTrue(0 < trainer.best_metric.item() < 1)
- if __name__ == "__main__":
- unittest.main()
|