Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  1. import unittest
  2. from super_gradients.common.object_names import Models
  3. from super_gradients.training import Trainer, models
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.metrics import Accuracy
  6. from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
  7. import torch
  8. class TestInputSizesCallback(PhaseCallback):
  9. """
  10. Phase callback that collects the input shapes rates in lr_placeholder at the end of each forward pass.
  11. """
  12. def __init__(self, shapes_placeholder):
  13. super(TestInputSizesCallback, self).__init__(Phase.TRAIN_BATCH_END)
  14. self.shapes_placeholder = shapes_placeholder
  15. def __call__(self, context: PhaseContext):
  16. self.shapes_placeholder.append(context.inputs.shape)
  17. def test_forward_pass_prep_fn(inputs, targets, *args, **kwargs):
  18. inputs = torch.nn.functional.interpolate(inputs, size=(50, 50), mode="bilinear", align_corners=False)
  19. return inputs, targets
  20. class ForwardpassPrepFNTest(unittest.TestCase):
  21. def test_resizing_with_forward_pass_prep_fn(self):
  22. # Define Model
  23. trainer = Trainer("ForwardpassPrepFNTest")
  24. model = models.get(Models.RESNET18, num_classes=5)
  25. sizes = []
  26. phase_callbacks = [TestInputSizesCallback(sizes)]
  27. train_params = {
  28. "max_epochs": 2,
  29. "cosine_final_lr_ratio": 0.2,
  30. "lr_mode": "cosine",
  31. "lr_cooldown_epochs": 2,
  32. "lr_warmup_epochs": 3,
  33. "initial_lr": 1,
  34. "loss": "cross_entropy",
  35. "optimizer": "SGD",
  36. "criterion_params": {},
  37. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  38. "train_metrics_list": [Accuracy()],
  39. "valid_metrics_list": [Accuracy()],
  40. "metric_to_watch": "Accuracy",
  41. "greater_metric_to_watch_is_better": True,
  42. "ema": False,
  43. "phase_callbacks": phase_callbacks,
  44. "pre_prediction_callback": test_forward_pass_prep_fn,
  45. }
  46. trainer.train(model=model, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  47. # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
  48. # THE LRS AFTER THE UPDATE
  49. sizes = list(map(lambda size: size[2], sizes))
  50. self.assertTrue(all(map(lambda size: size == 50, sizes)))
Discard
Tip!

Press p or to see the previous file or, n or to see the next file