1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
- import unittest
- from super_gradients.common.object_names import Models
- from super_gradients.training import Trainer, models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
- import torch
- class TestInputSizesCallback(PhaseCallback):
- """
- Phase callback that collects the input shapes rates in lr_placeholder at the end of each forward pass.
- """
- def __init__(self, shapes_placeholder):
- super(TestInputSizesCallback, self).__init__(Phase.TRAIN_BATCH_END)
- self.shapes_placeholder = shapes_placeholder
- def __call__(self, context: PhaseContext):
- self.shapes_placeholder.append(context.inputs.shape)
- def test_forward_pass_prep_fn(inputs, targets, *args, **kwargs):
- inputs = torch.nn.functional.interpolate(inputs, size=(50, 50), mode="bilinear", align_corners=False)
- return inputs, targets
- class ForwardpassPrepFNTest(unittest.TestCase):
- def test_resizing_with_forward_pass_prep_fn(self):
- # Define Model
- trainer = Trainer("ForwardpassPrepFNTest")
- model = models.get(Models.RESNET18, num_classes=5)
- sizes = []
- phase_callbacks = [TestInputSizesCallback(sizes)]
- train_params = {
- "max_epochs": 2,
- "cosine_final_lr_ratio": 0.2,
- "lr_mode": "cosine",
- "lr_cooldown_epochs": 2,
- "lr_warmup_epochs": 3,
- "initial_lr": 1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "ema": False,
- "phase_callbacks": phase_callbacks,
- "pre_prediction_callback": test_forward_pass_prep_fn,
- }
- trainer.train(model=model, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
- # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
- # THE LRS AFTER THE UPDATE
- sizes = list(map(lambda size: size[2], sizes))
- self.assertTrue(all(map(lambda size: size == 50, sizes)))
|