Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  1. from super_gradients.training.losses.focal_loss import FocalLoss
  2. from super_gradients.training.losses.kd_losses import KDLogitsLoss
  3. from super_gradients.training.losses.label_smoothing_cross_entropy_loss import LabelSmoothingCrossEntropyLoss
  4. from super_gradients.training.losses.r_squared_loss import RSquaredLoss
  5. from super_gradients.training.losses.shelfnet_ohem_loss import ShelfNetOHEMLoss
  6. from super_gradients.training.losses.shelfnet_semantic_encoding_loss import ShelfNetSemanticEncodingLoss
  7. from super_gradients.training.losses.yolox_loss import YoloXDetectionLoss, YoloXFastDetectionLoss
  8. from super_gradients.training.losses.ssd_loss import SSDLoss
  9. from super_gradients.training.losses.bce_dice_loss import BCEDiceLoss
  10. from super_gradients.training.losses.dice_ce_edge_loss import DiceCEEdgeLoss
  11. from super_gradients.training.losses.ppyolo_loss import PPYoloELoss
  12. from super_gradients.training.losses.dekr_loss import DEKRLoss
  13. from super_gradients.training.losses.stdc_loss import STDCLoss
  14. from super_gradients.common.object_names import Losses
  15. from super_gradients.common.registry.registry import LOSSES
  16. __all__ = [
  17. "LOSSES",
  18. "Losses",
  19. "FocalLoss",
  20. "LabelSmoothingCrossEntropyLoss",
  21. "ShelfNetOHEMLoss",
  22. "ShelfNetSemanticEncodingLoss",
  23. "YoloXDetectionLoss",
  24. "YoloXFastDetectionLoss",
  25. "RSquaredLoss",
  26. "SSDLoss",
  27. "BCEDiceLoss",
  28. "KDLogitsLoss",
  29. "DiceCEEdgeLoss",
  30. "PPYoloELoss",
  31. "DEKRLoss",
  32. "STDCLoss",
  33. ]
Discard
Tip!

Press p or to see the previous file or, n or to see the next file