Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
  1. # Binary segmentation training example of UNet model on the Supervisely person dataset.
  2. # Instructions:
  3. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  4. # 1. Move to the project root (where you will find the ReadMe and src folder)
  5. # 2. Run the command:
  6. # UNet: python -m super_gradients.train_from_recipe --config-name=supervisely_unet
  7. #
  8. # Validation Target (Person class) IoU and training time:
  9. # UNet: input-size: [480, 320] mIoU: 89.18 1 X RTX A5000, 4 H
  10. #
  11. # Logs, tensorboards and network checkpoints:
  12. # UNet: https://deci-pretrained-models.s3.amazonaws.com/unet/supervisely/
  13. #
  14. defaults:
  15. - training_hyperparams: supervisely_default_train_params
  16. - dataset_params: supervisely_persons_dataset_params
  17. - checkpoint_params: default_checkpoint_params
  18. - _self_
  19. - variable_setup
  20. architecture: unet
  21. arch_params:
  22. num_classes: 1
  23. use_aux_heads: False
  24. training_hyperparams:
  25. initial_lr: 0.025
  26. loss:
  27. bce_dice_loss:
  28. loss_weights: [ 1., 1. ]
  29. logits: True
  30. dataset_params:
  31. batch_size: 16
  32. multi_gpu: OFF
  33. experiment_name: unet_supervisely
Discard
Tip!

Press p or to see the previous file or, n or to see the next file