Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
timho102003:dagshub_logger
# Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com # # `dataset_name` refers to the official name of the dataset. # You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6 # # Example: python -m super_gradients.train_from_recipe --config-name=roboflow_yolox dataset_name=digits-t2eg6 defaults: - training_hyperparams: coco2017_yolox_train_params - dataset_params: roboflow_detection_dataset_params - checkpoint_params: default_checkpoint_params - _self_ - variable_setup dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6") dataset_params: dataset_name: ${dataset_name} num_classes: ${roboflow_dataset_num_classes:${dataset_name}} architecture: yolox_m arch_params: num_classes: ${num_classes} yolo_type: 'yoloX' depth_mult_factor: 0.67 width_mult_factor: 0.75 train_dataloader: roboflow_train_yolox val_dataloader: roboflow_val_yolox load_checkpoint: False checkpoint_params: pretrained_weights: coco result_path: # By defaults saves results in checkpoints directory resume: False training_hyperparams: max_epochs: 100 resume: ${resume} criterion_params: num_classes: ${num_classes} train_metrics_list: - DetectionMetrics: normalize_targets: True post_prediction_callback: _target_: super_gradients.training.models.detection_models.yolo_base.YoloPostPredictionCallback iou: 0.65 conf: 0.01 num_cls: 80 valid_metrics_list: - DetectionMetrics: normalize_targets: True post_prediction_callback: _target_: super_gradients.training.models.detection_models.yolo_base.YoloPostPredictionCallback iou: 0.65 conf: 0.01 num_cls: 80 multi_gpu: DDP num_gpus: 3 experiment_name: ${architecture}_roboflow_${dataset_name}
Press p or to see the previous file or, n or to see the next file