Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  1. # ViT Imagenet1K fine tuning from Imagenet21K classification training:
  2. # This example trains with batch_size = 64 * 8 GPUs, total 512.
  3. # Training time on 8 x GeForce RTX A5000 is 15min / epoch.
  4. # ViT base : 84.15
  5. #
  6. # Log and tensorboard at s3://deci-pretrained-models/vit_base_imagenet1k/
  7. # Instructions:
  8. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  9. # 1. Move to the project root (where you will find the ReadMe and src folder)
  10. # 2. Run the command:
  11. # python -m super_gradients.train_from_recipe --config-name=imagenet_vit_base
  12. defaults:
  13. - training_hyperparams: imagenet_vit_train_params
  14. - dataset_params: imagenet_vit_base_dataset_params
  15. - arch_params: vit_base_arch_params
  16. - checkpoint_params: vit_base_imagenet_checkpoint_params
  17. - _self_
  18. - variable_setup
  19. train_dataloader: imagenet_train
  20. val_dataloader: imagenet_val
  21. resume: False
  22. training_hyperparams:
  23. resume: ${resume}
  24. experiment_name: vit_base_imagenet1k
  25. architecture: vit_base
  26. multi_gpu: DDP
  27. num_gpus: 8
Discard
Tip!

Press p or to see the previous file or, n or to see the next file