Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  1. # MobilNetV2 ImageNetDataset training recipe.
  2. # Top1-Accuracy: 73.08
  3. # Learning rate and batch size parameters, using 2 GPUs with DDP:
  4. # initial_lr: 0.032 batch-size: 256 * 2gpus = 512
  5. #
  6. # Instructions:
  7. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  8. # 1. Move to the project root (where you will find the ReadMe and src folder)
  9. # 2. Run the command:
  10. # python -m super_gradients.train_from_recipe --config-name=imagenet_mobilenetv2
  11. defaults:
  12. - training_hyperparams: imagenet_mobilenetv2_train_params
  13. - dataset_params: imagenet_mobilenetv2_dataset_params
  14. - arch_params: mobilenet_v2_arch_params
  15. - checkpoint_params: default_checkpoint_params
  16. - _self_
  17. - variable_setup
  18. train_dataloader: imagenet_train
  19. val_dataloader: imagenet_val
  20. arch_params:
  21. num_classes: 1000
  22. dropout: 0.2
  23. data_loader_num_workers: 8
  24. resume: False
  25. training_hyperparams:
  26. resume: ${resume}
  27. experiment_name: mobileNetv2_training
  28. multi_gpu: DDP
  29. num_gpus: 2
  30. architecture: mobilenet_v2
Discard
Tip!

Press p or to see the previous file or, n or to see the next file