Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
timho102003:dagshub_logger
data_dir: /data/rf100 dataset_name: # Set the name of the dataset you want to use (e.g. "digits-t2eg6") train_dataset_params: data_dir: ${..data_dir} # root path to Robflow datasets dataset_name: ${..dataset_name} split: train input_dim: [640, 640] cache_dir: cache: False transforms: - DetectionRandomAffine: degrees: 0. # rotation degrees, randomly sampled from [-degrees, degrees] translate: 0.1 # image translation fraction scales: [ 0.5, 1.5 ] # random rescale range (keeps size by padding/cropping) after mosaic transform. shear: 0.0 # shear degrees, randomly sampled from [-degrees, degrees] target_size: ${dataset_params.train_dataset_params.input_dim} filter_box_candidates: True # whether to filter out transformed bboxes by edge size, area ratio, and aspect ratio. wh_thr: 2 # edge size threshold when filter_box_candidates = True (pixels) area_thr: 0.1 # threshold for area ratio between original image and the transformed one, when filter_box_candidates = True ar_thr: 20 # aspect ratio threshold when filter_box_candidates = True border_value: 128 - DetectionHSV: prob: 1.0 # probability to apply HSV transform hgain: 5 # HSV transform hue gain (randomly sampled from [-hgain, hgain]) sgain: 30 # HSV transform saturation gain (randomly sampled from [-sgain, sgain]) vgain: 30 # HSV transform value gain (randomly sampled from [-vgain, vgain]) - DetectionHorizontalFlip: prob: 0.5 # probability to apply horizontal flip - DetectionPaddedRescale: input_dim: ${dataset_params.train_dataset_params.input_dim} max_targets: 120 - DetectionTargetsFormatTransform: input_dim: ${dataset_params.train_dataset_params.input_dim} output_format: LABEL_CXCYWH tight_box_rotation: False class_inclusion_list: max_num_samples: with_crowd: False verbose: 0 train_dataloader_params: shuffle: True batch_size: 16 num_workers: 0 sampler: drop_last: False pin_memory: True worker_init_fn: _target_: super_gradients.training.utils.utils.load_func dotpath: super_gradients.training.datasets.datasets_utils.worker_init_reset_seed collate_fn: # collate function for trainset _target_: super_gradients.training.utils.detection_utils.DetectionCollateFN val_dataset_params: data_dir: ${..data_dir} # root path to Robflow datasets dataset_name: ${..dataset_name} split: valid input_dim: [640, 640] cache_dir: cache: False transforms: - DetectionPaddedRescale: input_dim: ${dataset_params.val_dataset_params.input_dim} - DetectionTargetsFormatTransform: max_targets: 50 input_dim: ${dataset_params.val_dataset_params.input_dim} output_format: LABEL_CXCYWH tight_box_rotation: False class_inclusion_list: max_num_samples: with_crowd: True verbose: 0 val_dataloader_params: batch_size: 64 num_workers: 0 sampler: drop_last: False pin_memory: True collate_fn: # collate function for valset _target_: super_gradients.training.utils.detection_utils.CrowdDetectionCollateFN _convert_: all
Press p or to see the previous file or, n or to see the next file