Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  1. data_dir: /data/rf100
  2. dataset_name: # Set the name of the dataset you want to use (e.g. "digits-t2eg6")
  3. train_dataset_params:
  4. data_dir: ${..data_dir} # root path to Robflow datasets
  5. dataset_name: ${..dataset_name}
  6. split: train
  7. input_dim: [640, 640]
  8. cache_dir:
  9. cache: False
  10. transforms:
  11. - DetectionRandomAffine:
  12. degrees: 0. # rotation degrees, randomly sampled from [-degrees, degrees]
  13. translate: 0.1 # image translation fraction
  14. scales: [ 0.5, 1.5 ] # random rescale range (keeps size by padding/cropping) after mosaic transform.
  15. shear: 0.0 # shear degrees, randomly sampled from [-degrees, degrees]
  16. target_size: ${dataset_params.train_dataset_params.input_dim}
  17. filter_box_candidates: True # whether to filter out transformed bboxes by edge size, area ratio, and aspect ratio.
  18. wh_thr: 2 # edge size threshold when filter_box_candidates = True (pixels)
  19. area_thr: 0.1 # threshold for area ratio between original image and the transformed one, when filter_box_candidates = True
  20. ar_thr: 20 # aspect ratio threshold when filter_box_candidates = True
  21. border_value: 128
  22. - DetectionHSV:
  23. prob: 1.0 # probability to apply HSV transform
  24. hgain: 5 # HSV transform hue gain (randomly sampled from [-hgain, hgain])
  25. sgain: 30 # HSV transform saturation gain (randomly sampled from [-sgain, sgain])
  26. vgain: 30 # HSV transform value gain (randomly sampled from [-vgain, vgain])
  27. - DetectionHorizontalFlip:
  28. prob: 0.5 # probability to apply horizontal flip
  29. - DetectionPaddedRescale:
  30. input_dim: ${dataset_params.train_dataset_params.input_dim}
  31. max_targets: 120
  32. - DetectionTargetsFormatTransform:
  33. input_dim: ${dataset_params.train_dataset_params.input_dim}
  34. output_format: LABEL_CXCYWH
  35. tight_box_rotation: False
  36. class_inclusion_list:
  37. max_num_samples:
  38. with_crowd: False
  39. verbose: 0
  40. train_dataloader_params:
  41. shuffle: True
  42. batch_size: 16
  43. num_workers: 0
  44. sampler:
  45. drop_last: False
  46. pin_memory: True
  47. worker_init_fn:
  48. _target_: super_gradients.training.utils.utils.load_func
  49. dotpath: super_gradients.training.datasets.datasets_utils.worker_init_reset_seed
  50. collate_fn: # collate function for trainset
  51. _target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
  52. val_dataset_params:
  53. data_dir: ${..data_dir} # root path to Robflow datasets
  54. dataset_name: ${..dataset_name}
  55. split: valid
  56. input_dim: [640, 640]
  57. cache_dir:
  58. cache: False
  59. transforms:
  60. - DetectionPaddedRescale:
  61. input_dim: ${dataset_params.val_dataset_params.input_dim}
  62. - DetectionTargetsFormatTransform:
  63. max_targets: 50
  64. input_dim: ${dataset_params.val_dataset_params.input_dim}
  65. output_format: LABEL_CXCYWH
  66. tight_box_rotation: False
  67. class_inclusion_list:
  68. max_num_samples:
  69. with_crowd: True
  70. verbose: 0
  71. val_dataloader_params:
  72. batch_size: 64
  73. num_workers: 0
  74. sampler:
  75. drop_last: False
  76. pin_memory: True
  77. collate_fn: # collate function for valset
  78. _target_: super_gradients.training.utils.detection_utils.CrowdDetectionCollateFN
  79. _convert_: all
Discard
Tip!

Press p or to see the previous file or, n or to see the next file