Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#869 Add DagsHub Logger to Super Gradients

Merged
Ghost merged 1 commits into Deci-AI:master from timho102003:dagshub_logger
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  1. train_dataset_params:
  2. data_dir: /data/coco # root path to coco data
  3. subdir: images/train2017 # sub directory path of data_dir containing the train data.
  4. json_file: instances_train2017.json # path to coco train json file, data_dir/annotations/train_json_file.
  5. input_dim: [640, 640]
  6. cache_dir:
  7. cache: False
  8. transforms:
  9. - DetectionMosaic:
  10. input_dim: ${dataset_params.train_dataset_params.input_dim}
  11. prob: 1.
  12. - DetectionRandomAffine:
  13. degrees: 10. # rotation degrees, randomly sampled from [-degrees, degrees]
  14. translate: 0.1 # image translation fraction
  15. scales: [ 0.1, 2 ] # random rescale range (keeps size by padding/cropping) after mosaic transform.
  16. shear: 2.0 # shear degrees, randomly sampled from [-degrees, degrees]
  17. target_size: ${dataset_params.train_dataset_params.input_dim}
  18. filter_box_candidates: True # whether to filter out transformed bboxes by edge size, area ratio, and aspect ratio.
  19. wh_thr: 2 # edge size threshold when filter_box_candidates = True (pixels)
  20. area_thr: 0.1 # threshold for area ratio between original image and the transformed one, when when filter_box_candidates = True
  21. ar_thr: 20 # aspect ratio threshold when filter_box_candidates = True
  22. - DetectionMixup:
  23. input_dim: ${dataset_params.train_dataset_params.input_dim}
  24. mixup_scale: [ 0.5, 1.5 ] # random rescale range for the additional sample in mixup
  25. prob: 1.0 # probability to apply per-sample mixup
  26. flip_prob: 0.5 # probability to apply horizontal flip
  27. - DetectionHSV:
  28. prob: 1.0 # probability to apply HSV transform
  29. hgain: 5 # HSV transform hue gain (randomly sampled from [-hgain, hgain])
  30. sgain: 30 # HSV transform saturation gain (randomly sampled from [-sgain, sgain])
  31. vgain: 30 # HSV transform value gain (randomly sampled from [-vgain, vgain])
  32. - DetectionHorizontalFlip:
  33. prob: 0.5 # probability to apply horizontal flip
  34. - DetectionPaddedRescale:
  35. input_dim: ${dataset_params.train_dataset_params.input_dim}
  36. max_targets: 120
  37. - DetectionTargetsFormatTransform:
  38. input_dim: ${dataset_params.train_dataset_params.input_dim}
  39. output_format: LABEL_CXCYWH
  40. tight_box_rotation: False
  41. class_inclusion_list:
  42. max_num_samples:
  43. with_crowd: False
  44. train_dataloader_params:
  45. shuffle: True
  46. batch_size: 16
  47. num_workers: 8
  48. drop_last: True
  49. pin_memory: True
  50. worker_init_fn:
  51. _target_: super_gradients.training.utils.utils.load_func
  52. dotpath: super_gradients.training.datasets.datasets_utils.worker_init_reset_seed
  53. collate_fn: # collate function for trainset
  54. _target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
  55. val_dataset_params:
  56. data_dir: /data/coco # root path to coco data
  57. subdir: images/val2017 # sub directory path of data_dir containing the train data.
  58. json_file: instances_val2017.json # path to coco train json file, data_dir/annotations/train_json_file.
  59. input_dim: [640, 640]
  60. cache_dir:
  61. cache: False
  62. transforms:
  63. - DetectionPaddedRescale:
  64. input_dim: ${dataset_params.val_dataset_params.input_dim}
  65. - DetectionTargetsFormatTransform:
  66. max_targets: 50
  67. input_dim: ${dataset_params.val_dataset_params.input_dim}
  68. output_format: LABEL_CXCYWH
  69. tight_box_rotation: False
  70. class_inclusion_list:
  71. max_num_samples:
  72. with_crowd: True
  73. val_dataloader_params:
  74. batch_size: 64
  75. num_workers: 8
  76. drop_last: False
  77. pin_memory: True
  78. collate_fn: # collate function for valset
  79. _target_: super_gradients.training.utils.detection_utils.CrowdDetectionCollateFN
  80. _convert_: all
Discard
Tip!

Press p or to see the previous file or, n or to see the next file