Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
timho102003:dagshub_logger
# TODO Fill in the description of the recipe. defaults: - training_hyperparams: coco2017_dekr_pose_train_params - dataset_params: coco_pose_estimation_dekr_dataset_params - arch_params: pose_ddrnet39_arch_params - checkpoint_params: default_checkpoint_params - _self_ - variable_setup resume: False architecture: pose_ddrnet39 multi_gpu: DDP num_gpus: 8 experiment_suffix: "" experiment_name: coco2017_${architecture}${experiment_suffix} train_dataloader: coco2017_pose_train val_dataloader: coco2017_pose_val arch_params: num_classes: ${dataset_params.num_joints} dataset_params: train_dataloader_params: batch_size: 8 val_dataloader_params: batch_size: 16 training_hyperparams: resume: ${resume} phase_callbacks: [] # Note: You can uncomment following block to enable visualization of intermediate results during training. # When enabled, these callbacks will save first batch from training & validation to Tensorboard. # This is helpful for debugging and doing visual checks whether predictions are reasonable and transforms are # working as expected. # The only downside is that it tend to bloat Tensorboard logs (Up to ten Gigs for long training regimes). # phase_callbacks: # - DEKRVisualizationCallback: # phase: # _target_: super_gradients.training.utils.callbacks.callbacks.Phase # value: TRAIN_BATCH_END # prefix: "train_" # mean: [ 0.485, 0.456, 0.406 ] # std: [ 0.229, 0.224, 0.225 ] # apply_sigmoid: False # # - DEKRVisualizationCallback: # phase: # _target_: super_gradients.training.utils.callbacks.callbacks.Phase # value: VALIDATION_BATCH_END # prefix: "val_" # mean: [ 0.485, 0.456, 0.406 ] # std: [ 0.229, 0.224, 0.225 ] # apply_sigmoid: False
Press p or to see the previous file or, n or to see the next file