1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
- depth_mult:
- width_mult:
- num_classes: 80
- backbone:
- layers: [ 3, 6, 6, 3 ] # Backbone's structure
- channels: [ 64, 128, 256, 512, 1024 ] # Number of outputs channels for stem and consecutive feature maps
- activation: silu
- return_idx: [ 1, 2, 3 ] # Indexes of feature maps to output, indiced 1,2,3 correspond to feature maps of stride 8,16,32
- use_large_stem: True # If True, uses 3 conv+bn+act instead of 2 in stem blocks
- use_alpha: False # If True, enables additional learnable weighting parameter for 1x1 branch in RepVGGBlock
- pretrained_weights:
- neck:
- in_channels: [256, 512, 1024]
- out_channels: [768, 384, 192]
- activation: silu
- block_num: 3
- stage_num: 1
- spp: True
- head:
- in_channels: [768, 384, 192]
- activation: silu
- fpn_strides: [32, 16, 8]
- grid_cell_scale: 5.0
- grid_cell_offset: 0.5
- reg_max: 16 # Number of bins for size prediction
- eval_size: # Size of the image for evaluation. Setting this value can be beneficial for inference speed since anchors will not be regenerated for each forward call.
|