Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#829 Feature/sg 747 support predict video full pipeline master

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-747-support_predict_video_full_pipeline_master
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  1. # Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com
  2. #
  3. # `dataset_name` refers to the official name of the dataset.
  4. # You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6
  5. #
  6. # Example: python train_from_recipe.py --config-name=roboflow_yolox dataset_name=digits-t2eg6
  7. defaults:
  8. - training_hyperparams: coco2017_yolox_train_params
  9. - dataset_params: roboflow_detection_dataset_params
  10. - checkpoint_params: default_checkpoint_params
  11. - _self_
  12. dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6")
  13. dataset_params:
  14. dataset_name: ${dataset_name}
  15. num_classes: ${roboflow_dataset_num_classes:${dataset_name}}
  16. architecture: yolox_m
  17. arch_params:
  18. num_classes: ${num_classes}
  19. yolo_type: 'yoloX'
  20. depth_mult_factor: 0.67
  21. width_mult_factor: 0.75
  22. train_dataloader: roboflow_train_yolox
  23. val_dataloader: roboflow_val_yolox
  24. load_checkpoint: False
  25. checkpoint_params:
  26. pretrained_weights: coco
  27. result_path: # By defaults saves results in checkpoints directory
  28. resume: False
  29. training_hyperparams:
  30. max_epochs: 100
  31. resume: ${resume}
  32. criterion_params:
  33. num_classes: ${num_classes}
  34. train_metrics_list:
  35. - DetectionMetrics:
  36. normalize_targets: True
  37. post_prediction_callback:
  38. _target_: super_gradients.training.models.detection_models.yolo_base.YoloPostPredictionCallback
  39. iou: 0.65
  40. conf: 0.01
  41. num_cls: 80
  42. valid_metrics_list:
  43. - DetectionMetrics:
  44. normalize_targets: True
  45. post_prediction_callback:
  46. _target_: super_gradients.training.models.detection_models.yolo_base.YoloPostPredictionCallback
  47. iou: 0.65
  48. conf: 0.01
  49. num_cls: 80
  50. multi_gpu: DDP
  51. num_gpus: 3
  52. experiment_name: ${architecture}_roboflow_${dataset_name}
  53. ckpt_root_dir:
  54. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  55. hydra:
  56. run:
  57. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  58. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file