Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#817 Added tutorial on DetectionOutputAdapter

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-744_DetectionOutputAdapter_Docs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  1. import unittest
  2. import numpy as np
  3. from super_gradients.training import Trainer
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.metrics import Accuracy
  6. from super_gradients.training.models import LeNet
  7. from super_gradients.training.utils.callbacks import TestLRCallback, LRCallbackBase, Phase, Callback, PhaseContext, CosineLRCallback
  8. class CollectLRCallback(Callback):
  9. def __init__(self):
  10. self.per_step_learning_rates = []
  11. self.per_epoch_learning_rates = []
  12. def on_train_batch_end(self, context: PhaseContext) -> None:
  13. self.per_step_learning_rates.append(context.optimizer.param_groups[0]["lr"])
  14. def on_train_loader_end(self, context: PhaseContext) -> None:
  15. self.per_epoch_learning_rates.append(context.optimizer.param_groups[0]["lr"])
  16. class ExponentialWarmupLRCallback(LRCallbackBase):
  17. """
  18. LR scheduling callback for exponential warmup.
  19. LR grows exponentially from warmup_initial_lr to initial lr.
  20. When warmup_initial_lr is None- LR climb starts from 0.001
  21. """
  22. def __init__(self, **kwargs):
  23. super().__init__(Phase.TRAIN_EPOCH_START, **kwargs)
  24. self.warmup_initial_lr = self.training_params.warmup_initial_lr or 0.001
  25. warmup_epochs = self.training_params.lr_warmup_epochs
  26. lr_start = self.warmup_initial_lr
  27. lr_end = self.initial_lr
  28. self.c1 = (lr_end - lr_start) / (np.exp(warmup_epochs) - 1.0)
  29. self.c2 = (lr_start * np.exp(warmup_epochs) - lr_end) / (np.exp(warmup_epochs) - 1.0)
  30. def perform_scheduling(self, context):
  31. self.lr = self.c1 * np.exp(context.epoch) + self.c2
  32. self.update_lr(context.optimizer, context.epoch, None)
  33. def is_lr_scheduling_enabled(self, context):
  34. return self.training_params.lr_warmup_epochs >= context.epoch
  35. class LRWarmupTest(unittest.TestCase):
  36. def test_lr_warmup(self):
  37. # Define Model
  38. net = LeNet()
  39. trainer = Trainer("lr_warmup_test")
  40. lrs = []
  41. phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
  42. train_params = {
  43. "max_epochs": 5,
  44. "lr_updates": [],
  45. "lr_decay_factor": 0.1,
  46. "lr_mode": "step",
  47. "lr_warmup_epochs": 3,
  48. "initial_lr": 1,
  49. "loss": "cross_entropy",
  50. "optimizer": "SGD",
  51. "criterion_params": {},
  52. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  53. "train_metrics_list": [Accuracy()],
  54. "valid_metrics_list": [Accuracy()],
  55. "metric_to_watch": "Accuracy",
  56. "greater_metric_to_watch_is_better": True,
  57. "ema": False,
  58. "phase_callbacks": phase_callbacks,
  59. "warmup_mode": "linear_epoch_step",
  60. }
  61. expected_lrs = [0.25, 0.5, 0.75, 1.0, 1.0]
  62. trainer.train(
  63. model=net,
  64. training_params=train_params,
  65. train_loader=classification_test_dataloader(batch_size=4),
  66. valid_loader=classification_test_dataloader(batch_size=4),
  67. )
  68. self.assertListEqual(lrs, expected_lrs)
  69. def test_lr_warmup_with_lr_scheduling(self):
  70. # Define model
  71. net = LeNet()
  72. trainer = Trainer("lr_warmup_test")
  73. lrs = []
  74. phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
  75. train_params = {
  76. "max_epochs": 5,
  77. "cosine_final_lr_ratio": 0.2,
  78. "lr_mode": "cosine",
  79. "lr_warmup_epochs": 3,
  80. "initial_lr": 1,
  81. "loss": "cross_entropy",
  82. "optimizer": "SGD",
  83. "criterion_params": {},
  84. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  85. "train_metrics_list": [Accuracy()],
  86. "valid_metrics_list": [Accuracy()],
  87. "metric_to_watch": "Accuracy",
  88. "greater_metric_to_watch_is_better": True,
  89. "ema": False,
  90. "phase_callbacks": phase_callbacks,
  91. "warmup_mode": "linear_epoch_step",
  92. }
  93. expected_lrs = [0.25, 0.5, 0.75, 0.9236067977499791, 0.4763932022500211]
  94. trainer.train(
  95. model=net,
  96. training_params=train_params,
  97. train_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
  98. valid_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
  99. )
  100. # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
  101. # THE LRS AFTER THE UPDATE
  102. self.assertListEqual(lrs, expected_lrs)
  103. def test_warmup_linear_batch_step(self):
  104. # Define model
  105. net = LeNet()
  106. trainer = Trainer("lr_warmup_test_per_step")
  107. collect_lr_callback = CollectLRCallback()
  108. warmup_initial_lr = 0.05
  109. lr_warmup_steps = 100
  110. initial_lr = 1
  111. cosine_final_lr_ratio = 0.2
  112. max_epochs = 5
  113. train_params = {
  114. "max_epochs": max_epochs,
  115. "lr_mode": "cosine",
  116. "cosine_final_lr_ratio": cosine_final_lr_ratio,
  117. "warmup_initial_lr": warmup_initial_lr,
  118. "warmup_mode": "linear_batch_step",
  119. "lr_warmup_steps": lr_warmup_steps,
  120. "initial_lr": 1,
  121. "loss": "cross_entropy",
  122. "optimizer": "SGD",
  123. "criterion_params": {},
  124. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  125. "train_metrics_list": [Accuracy()],
  126. "valid_metrics_list": [Accuracy()],
  127. "metric_to_watch": "Accuracy",
  128. "greater_metric_to_watch_is_better": True,
  129. "ema": False,
  130. "phase_callbacks": [collect_lr_callback],
  131. }
  132. train_loader = classification_test_dataloader(batch_size=4, dataset_size=1024)
  133. valid_loader = classification_test_dataloader(batch_size=4, dataset_size=5)
  134. expected_warmup_lrs = np.linspace(warmup_initial_lr, initial_lr, lr_warmup_steps).tolist()
  135. total_steps = max_epochs * len(train_loader) - lr_warmup_steps
  136. expected_cosine_lrs = CosineLRCallback.compute_learning_rate(
  137. step=np.arange(0, total_steps), total_steps=total_steps, initial_lr=initial_lr, final_lr_ratio=cosine_final_lr_ratio
  138. )
  139. trainer.train(
  140. model=net,
  141. training_params=train_params,
  142. train_loader=train_loader,
  143. valid_loader=valid_loader,
  144. )
  145. np.testing.assert_allclose(collect_lr_callback.per_step_learning_rates[:100], expected_warmup_lrs, rtol=1e-4)
  146. np.testing.assert_allclose(collect_lr_callback.per_step_learning_rates[100:], expected_cosine_lrs, rtol=1e-4)
  147. def test_warmup_linear_epoch_step(self):
  148. # Define model
  149. net = LeNet()
  150. trainer = Trainer("test_warmup_initial_lr")
  151. collect_lr_callback = CollectLRCallback()
  152. train_params = {
  153. "max_epochs": 5,
  154. "lr_updates": [],
  155. "lr_decay_factor": 0.1,
  156. "lr_mode": "step",
  157. "lr_warmup_epochs": 3,
  158. "initial_lr": 1,
  159. "warmup_initial_lr": 4.0,
  160. "loss": "cross_entropy",
  161. "optimizer": "SGD",
  162. "criterion_params": {},
  163. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  164. "train_metrics_list": [Accuracy()],
  165. "valid_metrics_list": [Accuracy()],
  166. "metric_to_watch": "Accuracy",
  167. "greater_metric_to_watch_is_better": True,
  168. "ema": False,
  169. "phase_callbacks": [collect_lr_callback],
  170. "warmup_mode": "linear_epoch_step",
  171. }
  172. expected_lrs = [4.0, 3.0, 2.0, 1.0, 1.0]
  173. trainer.train(
  174. model=net,
  175. training_params=train_params,
  176. train_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
  177. valid_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
  178. )
  179. self.assertListEqual(collect_lr_callback.per_epoch_learning_rates, expected_lrs)
  180. def test_custom_lr_warmup(self):
  181. # Define model
  182. net = LeNet()
  183. trainer = Trainer("custom_lr_warmup_test")
  184. lrs = []
  185. phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
  186. train_params = {
  187. "max_epochs": 5,
  188. "lr_updates": [],
  189. "lr_decay_factor": 0.1,
  190. "lr_mode": "step",
  191. "lr_warmup_epochs": 3,
  192. "loss": "cross_entropy",
  193. "optimizer": "SGD",
  194. "criterion_params": {},
  195. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  196. "train_metrics_list": [Accuracy()],
  197. "valid_metrics_list": [Accuracy()],
  198. "metric_to_watch": "Accuracy",
  199. "greater_metric_to_watch_is_better": True,
  200. "ema": False,
  201. "phase_callbacks": phase_callbacks,
  202. "warmup_mode": ExponentialWarmupLRCallback,
  203. "initial_lr": 1.0,
  204. "warmup_initial_lr": 0.1,
  205. }
  206. expected_lrs = [0.1, 0.18102751585334242, 0.40128313980266034, 1.0, 1.0]
  207. trainer.train(
  208. model=net,
  209. training_params=train_params,
  210. train_loader=classification_test_dataloader(batch_size=4),
  211. valid_loader=classification_test_dataloader(batch_size=4),
  212. )
  213. self.assertListEqual(lrs, expected_lrs)
  214. if __name__ == "__main__":
  215. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file