Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#807 Feature/sg 747 add full pipeline with preprocessing

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-747-add_full_pipeline_with_preprocessing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
  1. from .sg_module import SgModule
  2. # Classification models
  3. from super_gradients.training.models.classification_models.beit import Beit, BeitLargePatch16_224, BeitBasePatch16_224
  4. from super_gradients.training.models.classification_models.densenet import DenseNet, CustomizedDensnet, DenseNet121, DenseNet161, DenseNet169, DenseNet201
  5. from super_gradients.training.models.classification_models.dpn import DPN, DPN26, DPN92
  6. from super_gradients.training.models.classification_models.efficientnet import (
  7. CustomizedEfficientnet,
  8. EfficientNet,
  9. EfficientNetB0,
  10. EfficientNetB1,
  11. EfficientNetL2,
  12. EfficientNetB2,
  13. EfficientNetB3,
  14. EfficientNetB4,
  15. EfficientNetB5,
  16. EfficientNetB6,
  17. EfficientNetB7,
  18. EfficientNetB8,
  19. )
  20. from super_gradients.training.models.classification_models.googlenet import GoogleNetV1, GoogLeNet
  21. from super_gradients.training.models.classification_models.lenet import LeNet
  22. from super_gradients.training.models.classification_models.mobilenet import MobileNet
  23. from super_gradients.training.models.classification_models.mobilenetv2 import MobileNetBase, MobileNetV2Base, MobileNetV2, MobileNetV2_135, CustomMobileNetV2
  24. from super_gradients.training.models.classification_models.mobilenetv3 import MobileNetV3
  25. from super_gradients.training.models.classification_models.pnasnet import PNASNet, PNASNetA, PNASNetB
  26. from super_gradients.training.models.classification_models.preact_resnet import (
  27. PreActResNet,
  28. PreActResNet18,
  29. PreActResNet34,
  30. PreActResNet50,
  31. PreActResNet101,
  32. PreActResNet152,
  33. )
  34. from super_gradients.training.models.classification_models.resnet import (
  35. ResNet,
  36. ResNet18,
  37. ResNet34,
  38. ResNet50,
  39. ResNet101,
  40. ResNet152,
  41. ResNet18Cifar,
  42. ResNet50_3343,
  43. CifarResNet,
  44. CustomizedResnet,
  45. CustomizedResnet50Cifar,
  46. CustomizedResnetCifar,
  47. CustomizedResnet50,
  48. )
  49. from super_gradients.training.models.classification_models.resnext import ResNeXt, ResNeXt50, ResNeXt101
  50. from super_gradients.training.models.classification_models.senet import SENet, SENet18
  51. from super_gradients.training.models.classification_models.shufflenet import ShuffleNet, ShuffleNetG2, ShuffleNetG3
  52. from super_gradients.training.models.classification_models.shufflenetv2 import (
  53. ShuffleNetV2Base,
  54. ShufflenetV2_x0_5,
  55. ShufflenetV2_x1_0,
  56. ShufflenetV2_x1_5,
  57. CustomizedShuffleNetV2,
  58. ShufflenetV2_x2_0,
  59. )
  60. from super_gradients.training.models.classification_models.vgg import VGG
  61. from super_gradients.training.models.classification_models.vit import ViT, ViTBase, ViTLarge, ViTHuge
  62. # Detection models
  63. from super_gradients.training.models.detection_models.csp_darknet53 import CSPDarknet53
  64. from super_gradients.training.models.detection_models.pp_yolo_e.pp_yolo_e import PPYoloE, PPYoloE_S, PPYoloE_M, PPYoloE_L, PPYoloE_X
  65. from super_gradients.training.models.detection_models.darknet53 import Darknet53, Darknet53Base
  66. from super_gradients.training.models.detection_models.ssd import SSDMobileNetV1, SSDLiteMobileNetV2
  67. from super_gradients.training.models.detection_models.yolo_base import YoloBase, YoloPostPredictionCallback
  68. from super_gradients.training.models.detection_models.yolox import YoloX_N, YoloX_T, YoloX_S, YoloX_M, YoloX_L, YoloX_X, CustomYoloX
  69. from super_gradients.training.models.detection_models.customizable_detector import CustomizableDetector
  70. # Segmentation models
  71. from super_gradients.training.models.segmentation_models.shelfnet import (
  72. ShelfNet50,
  73. ShelfNet101,
  74. ShelfNetHW,
  75. ShelfNetLW,
  76. ShelfNetBase,
  77. ShelfNet503343,
  78. ShelfNet18_LW,
  79. ShelfNet34_LW,
  80. )
  81. from super_gradients.training.models.segmentation_models.unet.unet import UNet, UNetBase, UNetCustom
  82. from super_gradients.training.models.segmentation_models.ddrnet import DDRNet, DDRNet23, DDRNet39, DDRNetCustom, DDRNet23Slim
  83. from super_gradients.training.models.segmentation_models.laddernet import LadderNet, LadderNet50, LadderNet101, LadderNet503433
  84. from super_gradients.training.models.segmentation_models.ppliteseg import PPLiteSegBase, PPLiteSegB, PPLiteSegT
  85. from super_gradients.training.models.segmentation_models.regseg import RegSeg, RegSeg48, RegSeg53
  86. from super_gradients.training.models.segmentation_models.stdc import (
  87. STDC1Seg,
  88. STDC2Seg,
  89. STDCClassification,
  90. STDC1Classification,
  91. STDCClassificationBase,
  92. STDC2Classification,
  93. STDCSegmentationBase,
  94. CustomSTDCSegmentation,
  95. )
  96. # Pose estimation
  97. from super_gradients.training.models.pose_estimation_models.pose_ppyolo import PosePPYoloL
  98. from super_gradients.training.models.pose_estimation_models.pose_ddrnet39 import PoseDDRNet39
  99. from super_gradients.training.models.pose_estimation_models.dekr_hrnet import DEKRPoseEstimationModel, DEKRW32
  100. # KD
  101. from super_gradients.training.models.kd_modules.kd_module import KDModule
  102. import super_gradients.training.models.user_models as user_models
  103. from super_gradients.training.models.model_factory import get, get_model_name
  104. from super_gradients.training.models.arch_params_factory import get_arch_params
  105. from super_gradients.training.models.conversion import convert_to_onnx, convert_from_config
  106. from super_gradients.common.object_names import Models
  107. from super_gradients.common.registry.registry import ARCHITECTURES
  108. __all__ = [
  109. "SgModule",
  110. "Beit",
  111. "BeitLargePatch16_224",
  112. "BeitBasePatch16_224",
  113. "DenseNet",
  114. "CustomizedDensnet",
  115. "DenseNet121",
  116. "DenseNet161",
  117. "DenseNet169",
  118. "DenseNet201",
  119. "DPN",
  120. "DPN26",
  121. "DPN92",
  122. "CustomizedEfficientnet",
  123. "EfficientNet",
  124. "EfficientNetB0",
  125. "EfficientNetB1",
  126. "EfficientNetL2",
  127. "EfficientNetB2",
  128. "EfficientNetB3",
  129. "EfficientNetB4",
  130. "EfficientNetB5",
  131. "EfficientNetB6",
  132. "EfficientNetB7",
  133. "EfficientNetB8",
  134. "GoogleNetV1",
  135. "GoogLeNet",
  136. "LeNet",
  137. "MobileNet",
  138. "MobileNetBase",
  139. "MobileNetV2Base",
  140. "MobileNetV2",
  141. "MobileNetV2_135",
  142. "CustomMobileNetV2",
  143. "MobileNetV3",
  144. "PNASNet",
  145. "PNASNetA",
  146. "PNASNetB",
  147. "PreActResNet",
  148. "PreActResNet18",
  149. "PreActResNet34",
  150. "PreActResNet50",
  151. "PreActResNet101",
  152. "PreActResNet152",
  153. "ResNet",
  154. "ResNet18",
  155. "ResNet34",
  156. "ResNet50",
  157. "ResNet101",
  158. "ResNet152",
  159. "ResNet18Cifar",
  160. "ResNet50_3343",
  161. "CifarResNet",
  162. "CustomizedResnet",
  163. "CustomizedResnet50Cifar",
  164. "CustomizedResnetCifar",
  165. "CustomizedResnet50",
  166. "ResNeXt",
  167. "ResNeXt50",
  168. "ResNeXt101",
  169. "SENet",
  170. "SENet18",
  171. "ShuffleNet",
  172. "ShuffleNetG2",
  173. "ShuffleNetG3",
  174. "ShuffleNetV2Base",
  175. "ShufflenetV2_x0_5",
  176. "ShufflenetV2_x1_0",
  177. "ShufflenetV2_x1_5",
  178. "CustomizedShuffleNetV2",
  179. "ShufflenetV2_x2_0",
  180. "VGG",
  181. "ViT",
  182. "ViTBase",
  183. "ViTLarge",
  184. "ViTHuge",
  185. "CSPDarknet53",
  186. "PPYoloE",
  187. "PPYoloE_S",
  188. "PPYoloE_M",
  189. "PPYoloE_L",
  190. "PPYoloE_X",
  191. "Darknet53",
  192. "Darknet53Base",
  193. "SSDMobileNetV1",
  194. "SSDLiteMobileNetV2",
  195. "YoloBase",
  196. "YoloX_N",
  197. "YoloX_T",
  198. "YoloX_S",
  199. "YoloX_M",
  200. "YoloX_L",
  201. "YoloX_X",
  202. "CustomYoloX",
  203. "YoloPostPredictionCallback",
  204. "CustomizableDetector",
  205. "ShelfNet50",
  206. "ShelfNet101",
  207. "ShelfNetHW",
  208. "ShelfNetLW",
  209. "ShelfNetBase",
  210. "ShelfNet503343",
  211. "ShelfNet18_LW",
  212. "ShelfNet34_LW",
  213. "UNet",
  214. "UNetBase",
  215. "UNetCustom",
  216. "DDRNet",
  217. "DDRNet23",
  218. "DDRNet39",
  219. "DDRNetCustom",
  220. "DDRNet23Slim",
  221. "LadderNet",
  222. "LadderNet50",
  223. "LadderNet101",
  224. "LadderNet503433",
  225. "PPLiteSegBase",
  226. "PPLiteSegB",
  227. "PPLiteSegT",
  228. "RegSeg",
  229. "RegSeg48",
  230. "RegSeg53",
  231. "STDC1Seg",
  232. "STDC2Seg",
  233. "STDCClassification",
  234. "STDC1Classification",
  235. "STDCClassificationBase",
  236. "STDC2Classification",
  237. "STDCSegmentationBase",
  238. "CustomSTDCSegmentation",
  239. "PosePPYoloL",
  240. "PoseDDRNet39",
  241. "DEKRPoseEstimationModel",
  242. "DEKRW32",
  243. "KDModule",
  244. "get",
  245. "get_model_name",
  246. "get_arch_params",
  247. "convert_to_onnx",
  248. "convert_from_config",
  249. "ARCHITECTURES",
  250. "Models",
  251. "user_models",
  252. ]
Discard
Tip!

Press p or to see the previous file or, n or to see the next file