1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
- import unittest
- import os
- from super_gradients.training import Trainer, models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.common.object_names import Models
- class SaveCkptListUnitTest(unittest.TestCase):
- def setUp(self):
- # Define Parameters
- train_params = {
- "max_epochs": 4,
- "lr_decay_factor": 0.1,
- "lr_updates": [4],
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "save_ckpt_epoch_list": [1, 3],
- "loss": "cross_entropy",
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- # Define Model
- trainer = Trainer("save_ckpt_test")
- # Build Model
- model = models.get(Models.RESNET18_CIFAR, arch_params={"num_classes": 10})
- # Train Model (and save ckpt_epoch_list)
- trainer.train(model=model, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
- dir_path = trainer.checkpoints_dir_path
- self.file_names_list = [dir_path + f"/ckpt_epoch_{epoch}.pth" for epoch in train_params["save_ckpt_epoch_list"]]
- def test_save_ckpt_epoch_list(self):
- self.assertTrue(os.path.exists(self.file_names_list[0]))
- self.assertTrue(os.path.exists(self.file_names_list[1]))
- if __name__ == "__main__":
- unittest.main()
|