1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
- import unittest
- from super_gradients.training.utils.utils import get_param
- from super_gradients import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- class TrainOptimizerParamsOverride(unittest.TestCase):
- def test_optimizer_params_partial_override(self):
- trainer = Trainer("test_optimizer_params_partial_override")
- net = ResNet18(num_classes=5, arch_params={})
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"momentum": 0.9},
- "zero_weight_decay_on_bias_and_bn": True,
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(batch_size=10),
- valid_loader=classification_test_dataloader(batch_size=10),
- )
- self.assertTrue(get_param(trainer.training_params.optimizer_params, "weight_decay"), 1e-4)
- self.assertTrue(get_param(trainer.training_params.optimizer_params, "momentum"), 0.9)
- def test_optimizer_params_full_override(self):
- trainer = Trainer("test_optimizer_params_full_override")
- net = ResNet18(num_classes=5, arch_params={})
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "zero_weight_decay_on_bias_and_bn": True,
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(batch_size=10),
- valid_loader=classification_test_dataloader(batch_size=10),
- )
- self.assertTrue(get_param(trainer.training_params.optimizer_params, "weight_decay"), 1e-4)
- self.assertTrue(get_param(trainer.training_params.optimizer_params, "momentum"), 0.9)
|