Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#657 Segmentation Readme

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-594-segmentation_readme
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  1. import unittest
  2. from super_gradients.training import models
  3. from super_gradients.training import Trainer
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.kd_trainer import KDTrainer
  6. import torch
  7. from super_gradients.training.utils.utils import check_models_have_same_weights
  8. from super_gradients.training.metrics import Accuracy
  9. from super_gradients.training.losses.kd_losses import KDLogitsLoss
  10. from super_gradients.common.object_names import Models
  11. class KDEMATest(unittest.TestCase):
  12. @classmethod
  13. def setUp(cls):
  14. cls.sg_trained_teacher = Trainer("sg_trained_teacher")
  15. cls.kd_train_params = {
  16. "max_epochs": 3,
  17. "lr_updates": [1],
  18. "lr_decay_factor": 0.1,
  19. "lr_mode": "step",
  20. "lr_warmup_epochs": 0,
  21. "initial_lr": 0.1,
  22. "loss": KDLogitsLoss(torch.nn.CrossEntropyLoss()),
  23. "optimizer": "SGD",
  24. "criterion_params": {},
  25. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  26. "train_metrics_list": [Accuracy()],
  27. "valid_metrics_list": [Accuracy()],
  28. "metric_to_watch": "Accuracy",
  29. "loss_logging_items_names": ["Loss", "Task Loss", "Distillation Loss"],
  30. "greater_metric_to_watch_is_better": True,
  31. "average_best_models": False,
  32. "ema": True,
  33. "ema_params": {"decay_type": "constant", "decay": 0.999},
  34. }
  35. def test_teacher_ema_not_duplicated(self):
  36. """Check that the teacher EMA is a reference to the teacher net (not a copy)."""
  37. kd_model = KDTrainer("test_teacher_ema_not_duplicated")
  38. student = models.get(Models.RESNET18, arch_params={"num_classes": 1000})
  39. teacher = models.get(Models.RESNET50, arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  40. kd_model.train(
  41. training_params=self.kd_train_params,
  42. student=student,
  43. teacher=teacher,
  44. train_loader=classification_test_dataloader(),
  45. valid_loader=classification_test_dataloader(),
  46. )
  47. self.assertTrue(kd_model.ema_model.ema.module.teacher is kd_model.net.module.teacher)
  48. self.assertTrue(kd_model.ema_model.ema.module.student is not kd_model.net.module.student)
  49. def test_kd_ckpt_reload_net(self):
  50. """Check that the KD trainer load correctly from checkpoint when "load_ema_as_net=False"."""
  51. # Create a KD trainer and train it
  52. train_params = self.kd_train_params.copy()
  53. kd_model = KDTrainer("test_kd_ema_ckpt_reload")
  54. student = models.get(Models.RESNET18, arch_params={"num_classes": 1000})
  55. teacher = models.get(Models.RESNET50, arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  56. kd_model.train(
  57. training_params=self.kd_train_params,
  58. student=student,
  59. teacher=teacher,
  60. train_loader=classification_test_dataloader(),
  61. valid_loader=classification_test_dataloader(),
  62. )
  63. ema_model = kd_model.ema_model.ema
  64. net = kd_model.net
  65. # Load the trained KD trainer
  66. kd_model = KDTrainer("test_kd_ema_ckpt_reload")
  67. student = models.get(Models.RESNET18, arch_params={"num_classes": 1000})
  68. teacher = models.get(Models.RESNET50, arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  69. train_params["resume"] = True
  70. kd_model.train(
  71. training_params=train_params,
  72. student=student,
  73. teacher=teacher,
  74. train_loader=classification_test_dataloader(),
  75. valid_loader=classification_test_dataloader(),
  76. )
  77. reloaded_ema_model = kd_model.ema_model.ema
  78. reloaded_net = kd_model.net
  79. # trained ema == loaded ema (Should always be true as long as "ema=True" in train_params)
  80. self.assertTrue(check_models_have_same_weights(ema_model, reloaded_ema_model))
  81. # loaded net == trained net (since load_ema_as_net = False)
  82. self.assertTrue(check_models_have_same_weights(reloaded_net, net))
  83. # loaded net != trained ema (since load_ema_as_net = False)
  84. self.assertTrue(not check_models_have_same_weights(reloaded_net, ema_model))
  85. # loaded student ema == loaded student net (since load_ema_as_net = False)
  86. self.assertTrue(not check_models_have_same_weights(reloaded_ema_model.module.student, reloaded_net.module.student))
  87. # loaded teacher ema == loaded teacher net (teacher always loads ema)
  88. self.assertTrue(check_models_have_same_weights(reloaded_ema_model.module.teacher, reloaded_net.module.teacher))
  89. if __name__ == "__main__":
  90. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file