Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#657 Segmentation Readme

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-594-segmentation_readme
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  1. import unittest
  2. import torch
  3. from super_gradients import Trainer
  4. from super_gradients.common.decorators.factory_decorator import resolve_param
  5. from super_gradients.common.factories.activations_type_factory import ActivationsTypeFactory
  6. from super_gradients.common.object_names import Models
  7. from super_gradients.training import models
  8. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  9. from super_gradients.training.losses import LabelSmoothingCrossEntropyLoss
  10. from super_gradients.training.metrics import Accuracy, Top5
  11. from torch import nn
  12. class FactoriesTest(unittest.TestCase):
  13. def test_training_with_factories(self):
  14. trainer = Trainer("test_train_with_factories")
  15. net = models.get(Models.RESNET18, num_classes=5)
  16. train_params = {
  17. "max_epochs": 2,
  18. "lr_updates": [1],
  19. "lr_decay_factor": 0.1,
  20. "lr_mode": "step",
  21. "lr_warmup_epochs": 0,
  22. "initial_lr": 0.1,
  23. "loss": "cross_entropy",
  24. "optimizer": "torch.optim.ASGD", # use an optimizer by factory
  25. "criterion_params": {},
  26. "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
  27. "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  28. "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  29. "metric_to_watch": "Accuracy",
  30. "greater_metric_to_watch_is_better": True,
  31. }
  32. trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  33. self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
  34. self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
  35. self.assertIsInstance(trainer.optimizer, torch.optim.ASGD)
  36. def test_training_with_factories_with_typos(self):
  37. trainer = Trainer("test_train_with_factories_with_typos")
  38. net = models.get("Resnet___18", num_classes=5)
  39. train_params = {
  40. "max_epochs": 2,
  41. "lr_updates": [1],
  42. "lr_decay_factor": 0.1,
  43. "lr_mode": "step",
  44. "lr_warmup_epochs": 0,
  45. "initial_lr": 0.1,
  46. "loss": "crossEnt_ropy",
  47. "optimizer": "AdAm_", # use an optimizer by factory
  48. "criterion_params": {},
  49. "train_metrics_list": ["accur_acy", "Top_5"], # use a metric by factory
  50. "valid_metrics_list": ["aCCuracy", "Top5"], # use a metric by factory
  51. "metric_to_watch": "Accurac_Y",
  52. "greater_metric_to_watch_is_better": True,
  53. }
  54. trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  55. self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
  56. self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
  57. self.assertIsInstance(trainer.optimizer, torch.optim.Adam)
  58. self.assertIsInstance(trainer.criterion, LabelSmoothingCrossEntropyLoss)
  59. def test_activations_factory(self):
  60. class DummyModel(nn.Module):
  61. @resolve_param("activation_in_head", ActivationsTypeFactory())
  62. def __init__(self, activation_in_head):
  63. super().__init__()
  64. self.activation_in_head = activation_in_head()
  65. model = DummyModel(activation_in_head="leaky_relu")
  66. self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
  67. if __name__ == "__main__":
  68. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file