1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
- from super_gradients.common.object_names import Models
- from super_gradients.training import models
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- import unittest
- def do_nothing():
- pass
- class CallWrapper:
- def __init__(self, f, check_before=do_nothing):
- self.f = f
- self.check_before = check_before
- def __call__(self, *args, **kwargs):
- self.check_before()
- return self.f(*args, **kwargs)
- class EMAIntegrationTest(unittest.TestCase):
- def _init_model(self) -> None:
- self.trainer = Trainer("resnet18_cifar_ema_test")
- self.model = models.get(Models.RESNET18_CIFAR, arch_params={"num_classes": 5})
- @classmethod
- def tearDownClass(cls) -> None:
- pass
- def test_train_exp_decay(self):
- self._init_model()
- self._train({"decay_type": "exp", "beta": 15, "decay": 0.9999})
- def test_train_threshold_decay(self):
- self._init_model()
- self._train({"decay_type": "threshold", "decay": 0.9999})
- def test_train_constant_decay(self):
- self._init_model()
- self._train({"decay_type": "constant", "decay": 0.9999})
- def test_train_with_old_ema_params(self):
- self._init_model()
- self._train({"decay": 0.9999, "exp_activation": True, "beta": 10})
- def _train(self, ema_params):
- training_params = {
- "max_epochs": 4,
- "lr_updates": [4],
- "lr_mode": "step",
- "lr_decay_factor": 0.1,
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "ema": True,
- "ema_params": ema_params,
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- def before_test():
- self.assertEqual(self.trainer.net, self.trainer.ema_model.ema)
- def before_train_epoch():
- self.assertNotEqual(self.trainer.net, self.trainer.ema_model.ema)
- self.trainer.test = CallWrapper(self.trainer.test, check_before=before_test)
- self.trainer._train_epoch = CallWrapper(self.trainer._train_epoch, check_before=before_train_epoch)
- self.trainer.train(
- model=self.model, training_params=training_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader()
- )
- self.assertIsNotNone(self.trainer.ema_model)
- if __name__ == "__main__":
- unittest.main()
|