1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
- import shutil
- import unittest
- from super_gradients.training import models
- import super_gradients
- import torch
- import os
- from super_gradients import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- class TestTrainer(unittest.TestCase):
- @classmethod
- def setUp(cls):
- super_gradients.init_trainer()
- # NAMES FOR THE EXPERIMENTS TO LATER DELETE
- cls.folder_names = ['test_train', 'test_save_load', 'test_load_w', 'test_load_w2',
- 'test_load_w3', 'test_checkpoint_content', 'analyze']
- cls.training_params = {"max_epochs": 1,
- "silent_mode": True,
- "lr_decay_factor": 0.1,
- "initial_lr": 0.1,
- "lr_updates": [4],
- "lr_mode": "step",
- "loss": "cross_entropy", "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- @classmethod
- def tearDownClass(cls) -> None:
- # ERASE ALL THE FOLDERS THAT WERE CREATED DURING THIS TEST
- for folder in cls.folder_names:
- if os.path.isdir(os.path.join('checkpoints', folder)):
- shutil.rmtree(os.path.join('checkpoints', folder))
- @staticmethod
- def get_classification_trainer(name=''):
- trainer = Trainer(name)
- model = models.get("resnet18", num_classes=5)
- return trainer, model
- def test_train(self):
- trainer, model = self.get_classification_trainer(self.folder_names[0])
- trainer.train(model=model, training_params=self.training_params, train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- def test_save_load(self):
- trainer, model = self.get_classification_trainer(self.folder_names[1])
- trainer.train(model=model, training_params=self.training_params, train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- resume_training_params = self.training_params.copy()
- resume_training_params["resume"] = True
- resume_training_params["max_epochs"] = 2
- trainer, model = self.get_classification_trainer(self.folder_names[1])
- trainer.train(model=model, training_params=resume_training_params,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- def test_checkpoint_content(self):
- """VERIFY THAT ALL CHECKPOINTS ARE SAVED AND CONTAIN ALL THE EXPECTED KEYS"""
- trainer, model = self.get_classification_trainer(self.folder_names[5])
- params = self.training_params.copy()
- params["save_ckpt_epoch_list"] = [1]
- trainer.train(model=model, training_params=params, train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- ckpt_filename = ['ckpt_best.pth', 'ckpt_latest.pth', 'ckpt_epoch_1.pth']
- ckpt_paths = [os.path.join(trainer.checkpoints_dir_path, suf) for suf in ckpt_filename]
- for ckpt_path in ckpt_paths:
- ckpt = torch.load(ckpt_path)
- self.assertListEqual(['net', 'acc', 'epoch', 'optimizer_state_dict', 'scaler_state_dict'],
- list(ckpt.keys()))
- trainer._save_checkpoint()
- weights_only = torch.load(os.path.join(trainer.checkpoints_dir_path, 'ckpt_latest_weights_only.pth'))
- self.assertListEqual(['net'], list(weights_only.keys()))
- if __name__ == '__main__':
- unittest.main()
|