1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
- from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
- from typing import Optional
- import torch
- import numpy as np
- from super_gradients.common.abstractions.abstract_logger import get_logger
- logger = get_logger(__name__)
- class EarlyStop(PhaseCallback):
- """
- Callback to monitor a metric and stop training when it stops improving.
- Inspired by pytorch_lightning.callbacks.early_stopping and tf.keras.callbacks.EarlyStopping
- """
- mode_dict = {"min": torch.lt, "max": torch.gt}
- supported_phases = (Phase.VALIDATION_EPOCH_END, Phase.TRAIN_EPOCH_END)
- def __init__(self,
- phase: Phase,
- monitor: str,
- mode: str = "min",
- min_delta: float = 0.0,
- patience: int = 3,
- check_finite: bool = True,
- threshold: Optional[float] = None,
- verbose: bool = False,
- strict: bool = True
- ):
- """
- :param phase: Callback phase event.
- :param monitor: name of the metric to be monitored.
- :param mode: one of 'min', 'max'. In 'min' mode, training will stop when the quantity
- monitored has stopped decreasing and in 'max' mode it will stop when the quantity
- monitored has stopped increasing.
- :param min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute
- change of less than `min_delta`, will count as no improvement.
- :param patience: number of checks with no improvement after which training will be stopped.
- One check happens after every phase event.
- :param check_finite: When set ``True``, stops training when the monitor becomes NaN or infinite.
- :param threshold: Stop training immediately once the monitored quantity reaches this threshold. For mode 'min'
- stops training when below threshold, For mode 'max' stops training when above threshold.
- :param verbose: If `True` print logs.
- :param strict: whether to crash the training if `monitor` is not found in the metrics.
- """
- super(EarlyStop, self).__init__(phase)
- if phase not in self.supported_phases:
- raise ValueError(f"EarlyStop doesn't support phase: {phase}, "
- f"excepted {', '.join([str(x) for x in self.supported_phases])}")
- self.phase = phase
- self.monitor_key = monitor
- self.min_delta = min_delta
- self.patience = patience
- self.mode = mode
- self.check_finite = check_finite
- self.threshold = threshold
- self.verbose = verbose
- self.strict = strict
- self.wait_count = 0
- if self.mode not in self.mode_dict:
- raise Exception(f"`mode` can be {', '.join(self.mode_dict.keys())}, got {self.mode}")
- self.monitor_op = self.mode_dict[self.mode]
- self.min_delta *= 1 if self.monitor_op == torch.gt else -1
- torch_inf = torch.tensor(np.Inf)
- self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
- def _get_metric_value(self, metrics_dict):
- if self.monitor_key not in metrics_dict.keys():
- msg = f"Can't find EarlyStop monitor {self.monitor_key} in metrics_dict: {metrics_dict.keys()}"
- exception_cls = RuntimeError if self.strict else MissingMonitorKeyException
- raise exception_cls(msg)
- return metrics_dict[self.monitor_key]
- def _check_for_early_stop(self, current: torch.Tensor):
- should_stop = False
- # check if current value is Nan or inf
- if self.check_finite and not torch.isfinite(current):
- should_stop = True
- reason = (
- f"Monitored metric {self.monitor_key} = {current} is not finite."
- f" Previous best value was {self.best_score:.3f}. Signaling Trainer to stop."
- )
- # check if current value reached threshold value
- elif self.threshold is not None and self.monitor_op(current, self.threshold):
- should_stop = True
- reason = (
- "Stopping threshold reached:"
- f" {self.monitor_key} = {current} {self.monitor_op} {self.threshold}."
- " Signaling Trainer to stop."
- )
- # check if current is an improvement of monitor_key metric.
- elif self.monitor_op(current - self.min_delta, self.best_score.to(current.device)):
- should_stop = False
- if torch.isfinite(self.best_score):
- reason = (
- f"Metric {self.monitor_key} improved by {abs(self.best_score - current):.3f} >="
- f" min_delta = {abs(self.min_delta)}. New best score: {current:.3f}"
- )
- else:
- reason = f"Metric {self.monitor_key} improved. New best score: {current:.3f}"
- self.best_score = current
- self.wait_count = 0
- # no improvement in monitor_key metric, check if wait_count is bigger than patience.
- else:
- self.wait_count += 1
- reason = f"Monitored metric {self.monitor_key} did not improve in the last {self.wait_count} records."
- if self.wait_count >= self.patience:
- should_stop = True
- reason += f" Best score: {self.best_score:.3f}. Signaling Trainer to stop."
- return reason, should_stop
- def __call__(self, context: PhaseContext):
- try:
- current = self._get_metric_value(context.metrics_dict)
- except MissingMonitorKeyException as e:
- logger.warning(e)
- return
- if not isinstance(current, torch.Tensor):
- current = torch.tensor(current)
- reason, self.should_stop = self._check_for_early_stop(current)
- # log reason message, and signal early stop if should_stop=True.
- if self.should_stop:
- self._signal_early_stop(context, reason)
- elif self.verbose:
- logger.info(reason)
- def _signal_early_stop(self, context: PhaseContext, reason: str):
- logger.info(reason)
- context.update_context(stop_training=True)
- class MissingMonitorKeyException(Exception):
- """
- Exception raised for missing monitor key in metrics_dict.
- """
- pass
|