Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#609 Ci fix

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:bugfix/infra-000_ci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  1. MODEL_URLS = {
  2. # RegNet-s
  3. "regnetY800_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY800/average_model.pth",
  4. "regnetY600_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY600/average_model_regnety600.pth",
  5. "regnetY400_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY400/average_model_regnety400.pth",
  6. "regnetY200_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY200/average_model_regnety200.pth",
  7. # ResNet-s
  8. "resnet50_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/KD_ResNet50_Beit_Base_ImageNet/resnet.pth",
  9. "resnet34_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/resent_34/average_model.pth",
  10. "resnet18_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/resnet18/average_model.pth",
  11. #
  12. "repvgg_a0_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/repvgg_a0_imagenet.pth",
  13. #
  14. "shelfnet34_lw_coco_segmentation_subclass": "https://deci-pretrained-models.s3.amazonaws.com" "/shelfnet34_coco_segmentation_subclass.pth",
  15. #
  16. "ddrnet_23_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23/average_model.pth",
  17. "ddrnet_23_slim_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23_slim/average_model.pth",
  18. #
  19. "stdc1_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc1_seg50_dice_edge/ckpt_best.pth",
  20. "stdc1_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/stdc1_seg75_cityscapes/ckpt_best.pth",
  21. "stdc2_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc2_seg50_dice_edge/ckpt_best.pth",
  22. "stdc2_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/stdc2_seg75_cityscapes/ckpt_best.pth",
  23. #
  24. "efficientnet_b0_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/efficientnet_b0/average_model-3.pth",
  25. #
  26. "ssd_lite_mobilenet_v2_coco": "https://deci-pretrained-models.s3.amazonaws.com/ssd_lite_mobilenet_v2/coco2017/2022-11-28/average_model.pth",
  27. "ssd_mobilenet_v1_coco": "https://deci-pretrained-models.s3.amazonaws.com/ssd_mobilenet_v1_coco_res320/ckpt_best.pth",
  28. #
  29. "mobilenet_v3_large_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv3+large+300epoch/average_model.pth",
  30. "mobilenet_v3_small_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv3+small/ckpt_best.pth",
  31. "mobilenet_v2_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv2+w1/ckpt_best.pth",
  32. #
  33. "regseg48_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/regseg48_cityscapes/ckpt_best.pth",
  34. #
  35. "vit_base_imagenet21k": "https://deci-pretrained-models.s3.amazonaws.com/vit_pretrained_imagenet21k/vit_base_16_imagenet21K.pth",
  36. "vit_large_imagenet21k": "https://deci-pretrained-models.s3.amazonaws.com/vit_pretrained_imagenet21k/vit_large_16_imagenet21K.pth",
  37. "vit_base_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/vit_base_imagenet1k/ckpt_best.pth",
  38. "vit_large_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/vit_large_cutmix_randaug_v2_lr%3D0.03/average_model.pth",
  39. #
  40. "beit_base_patch16_224_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/beit_base_patch16_224_imagenet.pth",
  41. "beit_base_patch16_224_cifar10": "https://deci-pretrained-models.s3.amazonaws.com/beit_cifar10.pth",
  42. #
  43. "yolox_s_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_s_coco/average_model.pth",
  44. "yolox_m_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_m_coco/average_model.pth",
  45. "yolox_l_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_l_coco/average_model.pth",
  46. "yolox_t_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_tiny_coco/ckpt_best.pth",
  47. "yolox_n_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_n_coco/ckpt_best.pth",
  48. #
  49. "pp_lite_t_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg50/average_model.pth",
  50. "pp_lite_t_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg75/average_model.pth",
  51. "pp_lite_b_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg50/average_model.pth",
  52. "pp_lite_b_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg75/average_model.pth",
  53. }
  54. PRETRAINED_NUM_CLASSES = {"imagenet": 1000, "imagenet21k": 21843, "coco_segmentation_subclass": 21, "cityscapes": 19, "coco": 80, "cifar10": 10}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file