1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
- '''VGG11/13/16/19 in Pytorch. Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py'''
- import torch
- import torch.nn as nn
- from super_gradients.training.models.sg_module import SgModule
- cfg = {
- 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
- 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
- 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
- }
- class VGG(SgModule):
- def __init__(self, vgg_name):
- super(VGG, self).__init__()
- self.features = self._make_layers(cfg[vgg_name])
- self.classifier = nn.Linear(512, 10)
- def forward(self, x):
- out = self.features(x)
- out = out.view(out.size(0), -1)
- out = self.classifier(out)
- return out
- def _make_layers(self, cfg):
- layers = []
- in_channels = 3
- for x in cfg:
- if x == 'M':
- layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
- else:
- layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
- nn.BatchNorm2d(x),
- nn.ReLU(inplace=True)]
- in_channels = x
- layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
- return nn.Sequential(*layers)
- def test():
- net = VGG('VGG11')
- x = torch.randn(2, 3, 32, 32)
- y = net(x)
- print(y.size())
- # test()
|