1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
- '''ShuffleNet in PyTorch.
- See the paper "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" for more details.
- https://github.com/kuangliu/pytorch-cifar/blob/master/models/shufflenet.py
- '''
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from super_gradients.training.models.sg_module import SgModule
- class ShuffleBlock(nn.Module):
- def __init__(self, groups):
- super(ShuffleBlock, self).__init__()
- self.groups = groups
- def forward(self, x):
- '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''
- N, C, H, W = x.size()
- g = self.groups
- return x.view(N, g, C // g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W)
- class Bottleneck(nn.Module):
- def __init__(self, in_planes, out_planes, stride, groups):
- super(Bottleneck, self).__init__()
- self.stride = stride
- mid_planes = out_planes / 4
- g = 1 if in_planes == 24 else groups
- self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
- self.bn1 = nn.BatchNorm2d(mid_planes)
- self.shuffle1 = ShuffleBlock(groups=g)
- self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes,
- bias=False)
- self.bn2 = nn.BatchNorm2d(mid_planes)
- self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
- self.bn3 = nn.BatchNorm2d(out_planes)
- self.shortcut = nn.Sequential()
- if stride == 2:
- self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.shuffle1(out)
- out = F.relu(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- res = self.shortcut(x)
- out = F.relu(torch.cat([out, res], 1)) if self.stride == 2 else F.relu(out + res)
- return out
- class ShuffleNet(SgModule):
- def __init__(self, cfg):
- super(ShuffleNet, self).__init__()
- out_planes = cfg['out_planes']
- num_blocks = cfg['num_blocks']
- groups = cfg['groups']
- self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(24)
- self.in_planes = 24
- self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups)
- self.layer2 = self._make_layer(out_planes[1], num_blocks[1], groups)
- self.layer3 = self._make_layer(out_planes[2], num_blocks[2], groups)
- self.linear = nn.Linear(out_planes[2], 10)
- def _make_layer(self, out_planes, num_blocks, groups):
- layers = []
- for i in range(num_blocks):
- stride = 2 if i == 0 else 1
- cat_planes = self.in_planes if i == 0 else 0
- layers.append(Bottleneck(self.in_planes, out_planes - cat_planes, stride=stride, groups=groups))
- self.in_planes = out_planes
- return nn.Sequential(*layers)
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = F.avg_pool2d(out, 4)
- out = out.view(out.size(0), -1)
- out = self.linear(out)
- return out
- def ShuffleNetG2():
- cfg = {
- 'out_planes': [200, 400, 800],
- 'num_blocks': [4, 8, 4],
- 'groups': 2
- }
- return ShuffleNet(cfg)
- def ShuffleNetG3():
- cfg = {
- 'out_planes': [240, 480, 960],
- 'num_blocks': [4, 8, 4],
- 'groups': 3
- }
- return ShuffleNet(cfg)
- def test():
- net = ShuffleNetG2()
- x = torch.randn(1, 3, 32, 32)
- y = net(x)
- print(y)
- # test()
|