1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
- '''SENet in PyTorch.
- SENet is the winner of ImageNet-2017. The paper is not released yet.
- Code adapted from https://github.com/fastai/imagenet-fast/blob/master/cifar10/models/cifar10/senet.py
- '''
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from super_gradients.training.models.sg_module import SgModule
- class BasicBlock(nn.Module):
- def __init__(self, in_planes, planes, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes)
- )
- # SE layers
- self.fc1 = nn.Conv2d(planes, planes // 16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear
- self.fc2 = nn.Conv2d(planes // 16, planes, kernel_size=1)
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- # Squeeze
- w = F.avg_pool2d(out, out.size(2))
- w = F.relu(self.fc1(w))
- w = F.sigmoid(self.fc2(w))
- # Excitation
- out = out * w # New broadcasting feature from v0.2!
- out += self.shortcut(x)
- out = F.relu(out)
- return out
- class PreActBlock(nn.Module):
- def __init__(self, in_planes, planes, stride=1):
- super(PreActBlock, self).__init__()
- self.bn1 = nn.BatchNorm2d(in_planes)
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
- if stride != 1 or in_planes != planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
- )
- # SE layers
- self.fc1 = nn.Conv2d(planes, planes // 16, kernel_size=1)
- self.fc2 = nn.Conv2d(planes // 16, planes, kernel_size=1)
- def forward(self, x):
- out = F.relu(self.bn1(x))
- shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
- out = self.conv1(out)
- out = self.conv2(F.relu(self.bn2(out)))
- # Squeeze
- w = F.avg_pool2d(out, out.size(2))
- w = F.relu(self.fc1(w))
- w = F.sigmoid(self.fc2(w))
- # Excitation
- out = out * w
- out += shortcut
- return out
- class SENet(SgModule):
- def __init__(self, block, num_blocks, num_classes=10):
- super(SENet, self).__init__()
- self.in_planes = 64
- self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
- self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
- self.linear = nn.Linear(512, num_classes)
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes
- return nn.Sequential(*layers)
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- out = F.avg_pool2d(out, 4)
- out = out.view(out.size(0), -1)
- out = self.linear(out)
- return out
- def SENet18():
- return SENet(PreActBlock, [2, 2, 2, 2])
- def test():
- net = SENet18()
- y = net(torch.randn(1, 3, 32, 32))
- print(y.size())
- # test()
|