1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
- """
- Repvgg Pytorch Implementation. This model trains a vgg with residual blocks
- but during inference (in deployment mode) will convert the model to vgg model.
- Pretrained models: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
- Refrerences:
- [1] https://github.com/DingXiaoH/RepVGG
- [2] https://arxiv.org/pdf/2101.03697.pdf
- Based on https://github.com/DingXiaoH/RepVGG
- """
- from typing import Union
- import torch.nn as nn
- from super_gradients.modules import RepVGGBlock, SEBlock
- from super_gradients.training.models.sg_module import SgModule
- from super_gradients.training.utils.module_utils import fuse_repvgg_blocks_residual_branches
- from super_gradients.training.utils.utils import get_param
- class RepVGG(SgModule):
- def __init__(
- self,
- struct,
- num_classes=1000,
- width_multiplier=None,
- build_residual_branches=True,
- use_se=False,
- backbone_mode=False,
- in_channels=3,
- ):
- """
- :param struct: list containing number of blocks per repvgg stage
- :param num_classes: number of classes if nut in backbone mode
- :param width_multiplier: list of per stage width multiplier or float if using single value for all stages
- :param build_residual_branches: whether to add residual connections or not
- :param use_se: use squeeze and excitation layers
- :param backbone_mode: if true, dropping the final linear layer
- :param in_channels: input channels
- """
- super(RepVGG, self).__init__()
- if isinstance(width_multiplier, float):
- width_multiplier = [width_multiplier] * 4
- else:
- assert len(width_multiplier) == 4
- self.build_residual_branches = build_residual_branches
- self.use_se = use_se
- self.backbone_mode = backbone_mode
- self.in_planes = int(64 * width_multiplier[0])
- self.stem = RepVGGBlock(
- in_channels=in_channels,
- out_channels=self.in_planes,
- stride=2,
- build_residual_branches=build_residual_branches,
- activation_type=nn.ReLU,
- activation_kwargs=dict(inplace=True),
- se_type=SEBlock if self.use_se else nn.Identity,
- se_kwargs=dict(in_channels=self.in_planes, internal_neurons=self.in_planes // 16) if self.use_se else None,
- )
- self.cur_layer_idx = 1
- self.stage1 = self._make_stage(int(64 * width_multiplier[0]), struct[0], stride=2)
- self.stage2 = self._make_stage(int(128 * width_multiplier[1]), struct[1], stride=2)
- self.stage3 = self._make_stage(int(256 * width_multiplier[2]), struct[2], stride=2)
- self.stage4 = self._make_stage(int(512 * width_multiplier[3]), struct[3], stride=2)
- if not self.backbone_mode:
- self.avgpool = nn.AdaptiveAvgPool2d(output_size=1)
- self.linear = nn.Linear(int(512 * width_multiplier[3]), num_classes)
- if not build_residual_branches:
- self.eval() # fusing has to be made in eval mode. When called in init, model will be built in eval mode
- fuse_repvgg_blocks_residual_branches(self)
- self.final_width_mult = width_multiplier[3]
- def _make_stage(self, planes, struct, stride):
- strides = [stride] + [1] * (struct - 1)
- blocks = []
- for stride in strides:
- blocks.append(
- RepVGGBlock(
- in_channels=self.in_planes,
- out_channels=planes,
- stride=stride,
- groups=1,
- build_residual_branches=self.build_residual_branches,
- activation_type=nn.ReLU,
- activation_kwargs=dict(inplace=True),
- se_type=SEBlock if self.use_se else nn.Identity,
- se_kwargs=dict(in_channels=self.in_planes, internal_neurons=self.in_planes // 16) if self.use_se else None,
- )
- )
- self.in_planes = planes
- self.cur_layer_idx += 1
- return nn.Sequential(*blocks)
- def forward(self, x):
- out = self.stem(x)
- out = self.stage1(out)
- out = self.stage2(out)
- out = self.stage3(out)
- out = self.stage4(out)
- if not self.backbone_mode:
- out = self.avgpool(out)
- out = out.view(out.size(0), -1)
- out = self.linear(out)
- return out
- def prep_model_for_conversion(self, input_size: Union[tuple, list] = None, **kwargs):
- if self.build_residual_branches:
- fuse_repvgg_blocks_residual_branches(self)
- def train(self, mode: bool = True):
- assert (
- not mode or self.build_residual_branches
- ), "Trying to train a model without residual branches, set arch_params.build_residual_branches to True and retrain the model"
- super(RepVGG, self).train(mode=mode)
- def replace_head(self, new_num_classes=None, new_head=None):
- if new_num_classes is None and new_head is None:
- raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
- if new_head is not None:
- self.linear = new_head
- else:
- self.linear = nn.Linear(int(512 * self.final_width_mult), new_num_classes)
- class RepVggCustom(RepVGG):
- def __init__(self, arch_params):
- super().__init__(
- struct=arch_params.struct,
- num_classes=arch_params.num_classes,
- width_multiplier=arch_params.width_multiplier,
- build_residual_branches=arch_params.build_residual_branches,
- use_se=get_param(arch_params, "use_se", False),
- backbone_mode=get_param(arch_params, "backbone_mode", False),
- in_channels=get_param(arch_params, "in_channels", 3),
- )
- class RepVggA0(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[2, 4, 14, 1], width_multiplier=[0.75, 0.75, 0.75, 2.5])
- super().__init__(arch_params=arch_params)
- class RepVggA1(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[2, 4, 14, 1], width_multiplier=[1, 1, 1, 2.5])
- super().__init__(arch_params=arch_params)
- class RepVggA2(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[2, 4, 14, 1], width_multiplier=[1.5, 1.5, 1.5, 2.75])
- super().__init__(arch_params=arch_params)
- class RepVggB0(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[4, 6, 16, 1], width_multiplier=[1, 1, 1, 2.5])
- super().__init__(arch_params=arch_params)
- class RepVggB1(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4])
- super().__init__(arch_params=arch_params)
- class RepVggB2(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5])
- super().__init__(arch_params=arch_params)
- class RepVggB3(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5])
- super().__init__(arch_params=arch_params)
- class RepVggD2SE(RepVggCustom):
- def __init__(self, arch_params):
- arch_params.override(struct=[8, 14, 24, 1], width_multiplier=[2.5, 2.5, 2.5, 5])
- super().__init__(arch_params=arch_params)
|