Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#609 Ci fix

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:bugfix/infra-000_ci
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  1. '''Pre-activation ResNet in PyTorch.
  2. Reference:
  3. [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
  4. Identity Mappings in Deep Residual Networks. arXiv:1603.05027
  5. Based on https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py
  6. '''
  7. import torch
  8. import torch.nn as nn
  9. import torch.nn.functional as F
  10. from super_gradients.training.models.sg_module import SgModule
  11. class PreActBlock(nn.Module):
  12. '''Pre-activation version of the BasicBlock.'''
  13. expansion = 1
  14. def __init__(self, in_planes, planes, stride=1):
  15. super(PreActBlock, self).__init__()
  16. self.bn1 = nn.BatchNorm2d(in_planes)
  17. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  18. self.bn2 = nn.BatchNorm2d(planes)
  19. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
  20. if stride != 1 or in_planes != self.expansion * planes:
  21. self.shortcut = nn.Sequential(
  22. nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False)
  23. )
  24. def forward(self, x):
  25. out = F.relu(self.bn1(x))
  26. shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
  27. out = self.conv1(out)
  28. out = self.conv2(F.relu(self.bn2(out)))
  29. out += shortcut
  30. return out
  31. class PreActBottleneck(nn.Module):
  32. '''Pre-activation version of the original Bottleneck module.'''
  33. expansion = 4
  34. def __init__(self, in_planes, planes, stride=1):
  35. super(PreActBottleneck, self).__init__()
  36. self.bn1 = nn.BatchNorm2d(in_planes)
  37. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
  38. self.bn2 = nn.BatchNorm2d(planes)
  39. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  40. self.bn3 = nn.BatchNorm2d(planes)
  41. self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
  42. if stride != 1 or in_planes != self.expansion * planes:
  43. self.shortcut = nn.Sequential(
  44. nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False)
  45. )
  46. def forward(self, x):
  47. out = F.relu(self.bn1(x))
  48. shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
  49. out = self.conv1(out)
  50. out = self.conv2(F.relu(self.bn2(out)))
  51. out = self.conv3(F.relu(self.bn3(out)))
  52. out += shortcut
  53. return out
  54. class PreActResNet(SgModule):
  55. def __init__(self, block, num_blocks, num_classes=10):
  56. super(PreActResNet, self).__init__()
  57. self.in_planes = 64
  58. self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
  59. self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
  60. self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
  61. self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
  62. self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
  63. self.linear = nn.Linear(512 * block.expansion, num_classes)
  64. def _make_layer(self, block, planes, num_blocks, stride):
  65. strides = [stride] + [1] * (num_blocks - 1)
  66. layers = []
  67. for stride in strides:
  68. layers.append(block(self.in_planes, planes, stride))
  69. self.in_planes = planes * block.expansion
  70. return nn.Sequential(*layers)
  71. def forward(self, x):
  72. out = self.conv1(x)
  73. out = self.layer1(out)
  74. out = self.layer2(out)
  75. out = self.layer3(out)
  76. out = self.layer4(out)
  77. out = F.avg_pool2d(out, 4)
  78. out = out.view(out.size(0), -1)
  79. out = self.linear(out)
  80. return out
  81. def PreActResNet18():
  82. return PreActResNet(PreActBlock, [2, 2, 2, 2])
  83. def PreActResNet34():
  84. return PreActResNet(PreActBlock, [3, 4, 6, 3])
  85. def PreActResNet50():
  86. return PreActResNet(PreActBottleneck, [3, 4, 6, 3])
  87. def PreActResNet101():
  88. return PreActResNet(PreActBottleneck, [3, 4, 23, 3])
  89. def PreActResNet152():
  90. return PreActResNet(PreActBottleneck, [3, 8, 36, 3])
  91. def test():
  92. net = PreActResNet18()
  93. y = net((torch.randn(1, 3, 32, 32)))
  94. print(y.size())
  95. # test()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file