1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
- """
- This is a PyTorch implementation of MobileNetV2 architecture as described in the paper:
- Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.
- https://arxiv.org/pdf/1801.04381
- Code taken from https://github.com/tonylins/pytorch-mobilenet-v2
- License: Apache Version 2.0, January 2004 http://www.apache.org/licenses/
- Pre-trained ImageNet model: 'deci-model-repository/mobilenet_v2/ckpt_best.pth'
- """
- import numpy as np
- import torch
- import torch.nn as nn
- import math
- from super_gradients.training.models.sg_module import SgModule
- from super_gradients.training.utils.utils import get_param
- class MobileNetBase(SgModule):
- def __init__(self):
- super(MobileNetBase, self).__init__()
- def replace_head(self, new_num_classes=None, new_head=None):
- if new_num_classes is None and new_head is None:
- raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
- if new_head is not None:
- self.classifier = new_head
- else:
- self.classifier[-1] = nn.Linear(self.classifier[-1].in_features, new_num_classes)
- def conv_bn(inp, oup, stride):
- return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
- def conv_1x1_bn(inp, oup):
- return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
- def make_divisible(x, divisible_by=8):
- import numpy as np
- return int(np.ceil(x * 1.0 / divisible_by) * divisible_by)
- class InvertedResidual(nn.Module):
- def __init__(self, inp, oup, stride, expand_ratio, grouped_conv_size=1):
- """
- :param inp: number of input channels
- :param oup: number of output channels
- :param stride: conv stride
- :param expand_ratio: expansion ratio of the hidden layer after pointwise conv
- :grouped_conv_size: number of channels per grouped convolution, for depth-wise-separable convolution, use grouped_conv_size=1
- """
- super(InvertedResidual, self).__init__()
- self.stride = stride
- assert stride in [1, 2]
- hidden_dim = int(inp * expand_ratio)
- groups = int(hidden_dim / grouped_conv_size)
- self.use_res_connect = self.stride == 1 and inp == oup
- if expand_ratio == 1:
- self.conv = nn.Sequential(
- # dw
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- )
- else:
- self.conv = nn.Sequential(
- # pw
- nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # dw
- nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
- nn.BatchNorm2d(hidden_dim),
- nn.ReLU6(inplace=True),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- )
- def forward(self, x):
- if self.use_res_connect:
- return x + self.conv(x)
- else:
- return self.conv(x)
- class MobileNetV2(MobileNetBase):
- def __init__(
- self,
- num_classes,
- dropout: float,
- width_mult=1.0,
- structure=None,
- backbone_mode: bool = False,
- grouped_conv_size=1,
- in_channels=3,
- ) -> object:
- super(MobileNetV2, self).__init__()
- self.in_channels = in_channels
- block = InvertedResidual
- last_channel = 1280
- # IF STRUCTURE IS NONE - USE THE DEFAULT STRUCTURE NOTED
- # t, c, n, s stage-0 is the first conv_bn layer
- self.interverted_residual_setting = structure or [
- [1, 16, 1, 1], # stage-1
- [6, 24, 2, 2], # stage-2
- [6, 32, 3, 2], # stage-3
- [6, 64, 4, 2], # stage-4
- [6, 96, 3, 1], # stage-5
- [6, 160, 3, 2], # stage-6
- [6, 320, 1, 1],
- ] # stage-7
- # stage-8 is the last_layer
- self.last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
- curr_channels = 32
- self.features = [conv_bn(in_channels, curr_channels, 2)]
- # building inverted residual blocks
- for t, c, n, s in self.interverted_residual_setting:
- output_channel = make_divisible(c * width_mult) if t > 1 else c
- for i in range(n):
- if i == 0:
- self.features.append(block(curr_channels, output_channel, s, expand_ratio=t, grouped_conv_size=grouped_conv_size))
- else:
- self.features.append(block(curr_channels, output_channel, 1, expand_ratio=t, grouped_conv_size=grouped_conv_size))
- curr_channels = output_channel
- # building last several layers
- self.features.append(conv_1x1_bn(curr_channels, self.last_channel))
- # make it nn.Sequential
- self.features = nn.Sequential(*self.features)
- self.backbone_mode = backbone_mode
- if self.backbone_mode:
- self.classifier = nn.Identity()
- # TODO: remove during migration of YOLOs to the new base
- self.backbone_connection_channels = self._extract_connection_layers_input_channel_size()
- else:
- # building classifier
- self.classifier = nn.Sequential(nn.Dropout(dropout), nn.Linear(self.last_channel, num_classes))
- self._initialize_weights()
- def forward(self, x):
- x = self.features(x)
- if self.backbone_mode:
- return x
- else:
- x = x.mean(3).mean(2)
- return self.classifier(x)
- def _extract_connection_layers_input_channel_size(self):
- """
- Extracts the number of channels out when using mobilenetV2 as yolo backbone
- """
- curr_layer_input = torch.rand(1, self.in_channels, 320, 320) # input dims are used to extract number of channels
- layers_num_to_extract = [np.array(self.interverted_residual_setting)[:stage, 2].sum() for stage in [3, 5]]
- connection_layers_input_channel_size = []
- for layer_idx, feature in enumerate(self.features):
- curr_layer_input = feature(curr_layer_input)
- if layer_idx in layers_num_to_extract:
- connection_layers_input_channel_size.append(curr_layer_input.shape[1])
- connection_layers_input_channel_size.append(self.last_channel)
- connection_layers_input_channel_size.reverse()
- return connection_layers_input_channel_size
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2.0 / n))
- if m.bias is not None:
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- elif isinstance(m, nn.Linear):
- n = m.weight.size(1)
- m.weight.data.normal_(0, 0.01)
- m.bias.data.zero_()
- class MobileNetV2Base(MobileNetV2):
- def __init__(self, arch_params):
- """
- :param arch_params: HpmStruct
- must contain: 'num_classes': int
- """
- super().__init__(
- num_classes=arch_params.num_classes,
- width_mult=1.0,
- structure=None,
- dropout=get_param(arch_params, "dropout", 0.0),
- in_channels=get_param(arch_params, "in_channels", 3),
- )
- class MobileNetV2_135(MobileNetV2):
- def __init__(self, arch_params):
- """
- This Model achieves–≠ 75.73% on Imagenet - similar to Resnet50
- :param arch_params: HpmStruct
- must contain: 'num_classes': int
- """
- super().__init__(
- num_classes=arch_params.num_classes,
- width_mult=1.35,
- structure=None,
- dropout=get_param(arch_params, "dropout", 0.0),
- in_channels=get_param(arch_params, "in_channels", 3),
- )
- class CustomMobileNetV2(MobileNetV2):
- def __init__(self, arch_params):
- """
- :param arch_params:–≠ HpmStruct
- must contain:
- 'num_classes': int
- 'width_mult': float
- 'structure' : list. specify the mobilenetv2 architecture
- """
- super().__init__(
- num_classes=arch_params.num_classes,
- width_mult=arch_params.width_mult,
- structure=arch_params.structure,
- dropout=get_param(arch_params, "dropout", 0.0),
- in_channels=get_param(arch_params, "in_channels", 3),
- )
|