1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
- """EfficientNet model class, based on
- "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`
- Code source: https://github.com/lukemelas/EfficientNet-PyTorch
- Pre-trained checkpoints converted to Deci's code base with the reported accuracy can be found in S3 repo
- """
- #######################################################################################################################
- # 1. Since each net expects a specific image size, make sure to build the dataset with the correct image size:
- # EfficientNetB0 - (224, 256), EfficientNetB1 - (240, 274), EfficientNetB2 - (260, 298), EfficientNetB3 - (300, 342), EfficientNetB4 - (380, 434),
- # EfficientNetB5 - (456, 520), EfficientNetB6 - (528, 602), EfficientNetB7 - (600, 684), EfficientNetB8 - (672, 768), EfficientNetL2 - (800, 914)
- # You should build the DataSetInterface with the following dictionary:
- # ImageNetDatasetInterface(dataset_params = {'crop': 260, 'resize': 298})
- # 2. Pre-trained ImageNet models can be found in S3://deci-model-repository-research/efficientnet_b#/ckpt_best.pth
- # 3. See example code in experimental/efficientnet/efficientnet_example.py
- #######################################################################################################################
- import re
- import math
- import collections
- from functools import partial
- import torch
- from torch import nn
- from torch.nn import functional as F
- from collections import OrderedDict
- from super_gradients.training.utils import HpmStruct
- from super_gradients.training.models.sg_module import SgModule
- # Parameters for an individual model block
- BlockArgs = collections.namedtuple('BlockArgs', [
- 'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
- 'input_filters', 'output_filters', 'se_ratio', 'id_skip'])
- # Set BlockArgs's defaults
- BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
- def round_filters(filters, width_coefficient, depth_divisor, min_depth):
- """Calculate and round number of filters based on width multiplier.
- Use width_coefficient, depth_divisor and min_depth.
- Args:
- filters (int): Filters number to be calculated.
- Params from arch_params:
- width_coefficient (int): model's width coefficient. Used as the multiplier.
- depth_divisor (int): model's depth divisor. Used as the divisor.
- and min_depth (int): model's minimal depth, if given.
- Returns:
- new_filters: New filters number after calculating.
- """
- if not width_coefficient:
- return filters
- min_depth = min_depth
- filters *= width_coefficient
- min_depth = min_depth or depth_divisor # pay attention to this line when using min_depth
- # follow the formula transferred from official TensorFlow implementation
- new_filters = max(min_depth, int(filters + depth_divisor / 2) // depth_divisor * depth_divisor)
- if new_filters < 0.9 * filters: # prevent rounding by more than 10%
- new_filters += depth_divisor
- return int(new_filters)
- def round_repeats(repeats, depth_coefficient):
- """Calculate module's repeat number of a block based on depth multiplier.
- Use depth_coefficient.
- Args:
- repeats (int): num_repeat to be calculated.
- depth_coefficient (int): the depth coefficient of the model. this func uses it as the multiplier.
- Returns:
- new repeat: New repeat number after calculating.
- """
- if not depth_coefficient:
- return repeats
- # follow the formula transferred from official TensorFlow implementation
- return int(math.ceil(depth_coefficient * repeats))
- def drop_connect(inputs, p, training):
- """Drop connect.
- Args:
- inputs (tensor: BCWH): Input of this structure.
- p (float: 0.0~1.0): Probability of drop connection.
- training (bool): The running mode.
- Returns:
- output: Output after drop connection.
- """
- assert p >= 0 and p <= 1, 'p must be in range of [0,1]'
- if not training:
- return inputs
- batch_size = inputs.shape[0]
- keep_prob = 1 - p
- # generate binary_tensor mask according to probability (p for 0, 1-p for 1)
- random_tensor = keep_prob
- random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
- binary_tensor = torch.floor(random_tensor)
- output = inputs / keep_prob * binary_tensor
- return output
- def calculate_output_image_size(input_image_size, stride):
- """Calculates the output image size when using Conv2dSamePadding with a stride.
- Necessary for static padding. Thanks to mannatsingh for pointing this out.
- Args:
- input_image_size (int, tuple or list): Size of input image.
- stride (int, tuple or list): Conv2d operation's stride.
- Returns:
- output_image_size: A list [H,W].
- """
- if input_image_size is None:
- return None
- elif isinstance(input_image_size, int):
- input_image_size = (input_image_size, input_image_size)
- image_height, image_width = input_image_size
- stride = stride if isinstance(stride, int) else stride[0]
- image_height = int(math.ceil(image_height / stride))
- image_width = int(math.ceil(image_width / stride))
- return [image_height, image_width]
- # Note:
- # The following 'SamePadding' functions make output size equal ceil(input size/stride).
- # Only when stride equals 1, can the output size be the same as input size.
- # Don't be confused by their function names ! ! !
- def get_same_padding_conv2d(image_size=None):
- """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
- Static padding is necessary for ONNX exporting of models.
- Args:
- image_size (int or tuple): Size of the image.
- Returns:
- Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
- """
- if image_size is None:
- return Conv2dDynamicSamePadding
- else:
- return partial(Conv2dStaticSamePadding, image_size=image_size)
- class Conv2dDynamicSamePadding(nn.Conv2d):
- """2D Convolutions like TensorFlow, for a dynamic image size.
- The padding is operated in forward function by calculating dynamically.
- """
- # Tips for 'SAME' mode padding.
- # Given the following:
- # i: width or height
- # s: stride
- # k: kernel size
- # d: dilation
- # p: padding
- # Output after Conv2d:
- # o = floor((i+p-((k-1)*d+1))/s+1)
- # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
- # => p = (i-1)*s+((k-1)*d+1)-i
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
- super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
- self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
- def forward(self, x):
- ih, iw = x.size()[-2:]
- kh, kw = self.weight.size()[-2:]
- sh, sw = self.stride
- oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) # change the output size according to stride ! ! !
- pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
- pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
- return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
- class Conv2dStaticSamePadding(nn.Conv2d):
- """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
- The padding mudule is calculated in construction function, then used in forward.
- """
- # With the same calculation as Conv2dDynamicSamePadding
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
- super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
- self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
- # Calculate padding based on image size and save it
- assert image_size is not None
- ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
- kh, kw = self.weight.size()[-2:]
- sh, sw = self.stride
- oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
- pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
- pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
- if pad_h > 0 or pad_w > 0:
- self.static_padding = nn.ZeroPad2d((pad_w - pad_w // 2, pad_w // 2, pad_h - pad_h // 2, pad_h // 2))
- else:
- self.static_padding = Identity()
- def forward(self, x):
- x = self.static_padding(x)
- x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
- return x
- class Identity(nn.Module):
- """Identity mapping.
- Send input to output directly.
- """
- def __init__(self):
- super(Identity, self).__init__()
- def forward(self, input):
- return input
- # BlockDecoder: A Class for encoding and decoding BlockArgs
- # get_model_params and efficientnet:
- # Functions to get BlockArgs and GlobalParams for efficientnet
- class BlockDecoder(object):
- """Block Decoder for readability, straight from the official TensorFlow repository."""
- @staticmethod
- def _decode_block_string(block_string):
- """Get a block through a string notation of arguments.
- Args:
- block_string (str): A string notation of arguments.
- Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.
- Returns:
- BlockArgs: The namedtuple defined at the top of this file.
- """
- assert isinstance(block_string, str)
- ops = block_string.split('_')
- options = {}
- for op in ops:
- splits = re.split(r'(\d.*)', op)
- if len(splits) >= 2:
- key, value = splits[:2]
- options[key] = value
- # Check stride
- assert (('s' in options and len(options['s']) == 1) or (len(options['s']) == 2 and options['s'][0] == options['s'][1]))
- return BlockArgs(
- num_repeat=int(options['r']),
- kernel_size=int(options['k']),
- stride=[int(options['s'][0])],
- expand_ratio=int(options['e']),
- input_filters=int(options['i']),
- output_filters=int(options['o']),
- se_ratio=float(options['se']) if 'se' in options else None,
- id_skip=('noskip' not in block_string))
- @staticmethod
- def _encode_block_string(block):
- """Encode a block to a string.
- Args:
- block (namedtuple): A BlockArgs type argument.
- Returns:
- block_string: A String form of BlockArgs.
- """
- args = [
- 'r%d' % block.num_repeat,
- 'k%d' % block.kernel_size,
- 's%d%d' % (block.strides[0], block.strides[1]),
- 'e%s' % block.expand_ratio,
- 'i%d' % block.input_filters,
- 'o%d' % block.output_filters
- ]
- if 0 < block.se_ratio <= 1:
- args.append('se%s' % block.se_ratio)
- if block.id_skip is False:
- args.append('noskip')
- return '_'.join(args)
- @staticmethod
- def decode(string_list):
- """Decode a list of string notations to specify blocks inside the network.
- Args:
- string_list (list[str]): A list of strings, each string is a notation of block.
- Returns:
- blocks_args: A list of BlockArgs namedtuples of block args.
- """
- assert isinstance(string_list, list)
- blocks_args = []
- for block_string in string_list:
- blocks_args.append(BlockDecoder._decode_block_string(block_string))
- return blocks_args
- @staticmethod
- def encode(blocks_args):
- """Encode a list of BlockArgs to a list of strings.
- Args:
- blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.
- Returns:
- block_strings: A list of strings, each string is a notation of block.
- """
- block_strings = []
- for block in blocks_args:
- block_strings.append(BlockDecoder._encode_block_string(block))
- return block_strings
- class MBConvBlock(nn.Module):
- """Mobile Inverted Residual Bottleneck Block.
- Args:
- block_args (namedtuple): BlockArgs.
- arch_params (HpmStruct): HpmStruct.
- image_size (tuple or list): [image_height, image_width].
- References:
- [1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
- [2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
- [3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
- """
- def __init__(self, block_args, batch_norm_momentum, batch_norm_epsilon, image_size=None):
- super().__init__()
- self._block_args = block_args
- self._bn_mom = 1 - batch_norm_momentum # pytorch's difference from tensorflow
- self._bn_eps = batch_norm_epsilon
- self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
- self.id_skip = block_args.id_skip # whether to use skip connection and drop connect
- # Expansion phase (Inverted Bottleneck)
- inp = self._block_args.input_filters # number of input channels
- oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
- if self._block_args.expand_ratio != 1:
- Conv2d = get_same_padding_conv2d(image_size=image_size)
- self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
- self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
- # Depthwise convolution phase
- k = self._block_args.kernel_size
- s = self._block_args.stride
- Conv2d = get_same_padding_conv2d(image_size=image_size)
- self._depthwise_conv = Conv2d(
- in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
- kernel_size=k, stride=s, bias=False)
- self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
- image_size = calculate_output_image_size(image_size, s)
- # Squeeze and Excitation layer, if desired
- if self.has_se:
- Conv2d = get_same_padding_conv2d(image_size=(1, 1))
- num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
- self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
- self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
- # Pointwise convolution phase
- final_oup = self._block_args.output_filters
- Conv2d = get_same_padding_conv2d(image_size=image_size)
- self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
- self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
- self._swish = nn.functional.silu
- def forward(self, inputs, drop_connect_rate=None):
- """MBConvBlock's forward function.
- Args:
- inputs (tensor): Input tensor.
- drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).
- Returns:
- Output of this block after processing.
- """
- # Expansion and Depthwise Convolution
- x = inputs
- if self._block_args.expand_ratio != 1:
- x = self._expand_conv(inputs)
- x = self._bn0(x)
- x = self._swish(x)
- x = self._depthwise_conv(x)
- x = self._bn1(x)
- x = self._swish(x)
- # Squeeze and Excitation
- if self.has_se:
- x_squeezed = F.adaptive_avg_pool2d(x, 1)
- x_squeezed = self._se_reduce(x_squeezed)
- x_squeezed = self._swish(x_squeezed)
- x_squeezed = self._se_expand(x_squeezed)
- x = torch.sigmoid(x_squeezed) * x
- # Pointwise Convolution
- x = self._project_conv(x)
- x = self._bn2(x)
- # Skip connection and drop connect
- input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
- if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
- # The combination of skip connection and drop connect brings about stochastic depth.
- if drop_connect_rate:
- x = drop_connect(x, p=drop_connect_rate, training=self.training)
- x = x + inputs # skip connection
- return x
- class EfficientNet(SgModule):
- """EfficientNet model.
- Args:
- blocks_args (list[namedtuple]): A list of BlockArgs to construct blocks.
- arch_params (HpmStruct): A set of global params shared between blocks.
- References:
- [1] https://arxiv.org/abs/1905.11946 (EfficientNet)
- """
- def __init__(self, blocks_args=None, arch_params=None):
- super().__init__()
- assert isinstance(blocks_args, list), 'blocks_args should be a list'
- assert len(blocks_args) > 0, 'block args must be greater than 0'
- self._arch_params = arch_params
- self._blocks_args = blocks_args
- self.backbone_mode = arch_params.backbone_mode
- # Batch norm parameters
- bn_mom = 1 - self._arch_params.batch_norm_momentum
- bn_eps = self._arch_params.batch_norm_epsilon
- # Get stem static or dynamic convolution depending on image size
- image_size = arch_params.image_size
- Conv2d = get_same_padding_conv2d(image_size=image_size)
- # Stem
- in_channels = 3 # rgb
- out_channels = round_filters(32, self._arch_params.width_coefficient, self._arch_params.depth_divisor,
- self._arch_params.min_depth) # number of output channels
- self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
- self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
- image_size = calculate_output_image_size(image_size, 2)
- # Build blocks
- self._blocks = nn.ModuleList([])
- for block_args in self._blocks_args:
- # Update block input and output filters based on depth multiplier.
- block_args = block_args._replace(
- input_filters=round_filters(block_args.input_filters, self._arch_params.width_coefficient,
- self._arch_params.depth_divisor, self._arch_params.min_depth),
- output_filters=round_filters(block_args.output_filters, self._arch_params.width_coefficient,
- self._arch_params.depth_divisor, self._arch_params.min_depth),
- num_repeat=round_repeats(block_args.num_repeat, self._arch_params.depth_coefficient))
- # The first block needs to take care of stride and filter size increase.
- self._blocks.append(MBConvBlock(block_args, self._arch_params.batch_norm_momentum,
- self._arch_params.batch_norm_epsilon, image_size=image_size))
- image_size = calculate_output_image_size(image_size, block_args.stride)
- if block_args.num_repeat > 1: # modify block_args to keep same output size
- block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
- for _ in range(block_args.num_repeat - 1):
- self._blocks.append(MBConvBlock(block_args, self._arch_params.batch_norm_momentum,
- self._arch_params.batch_norm_epsilon, image_size=image_size))
- # image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1
- # Head
- in_channels = block_args.output_filters # output of final block
- out_channels = round_filters(1280, self._arch_params.width_coefficient, self._arch_params.depth_divisor,
- self._arch_params.min_depth)
- Conv2d = get_same_padding_conv2d(image_size=image_size)
- self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
- self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
- # Final linear layer
- if not self.backbone_mode:
- self._avg_pooling = nn.AdaptiveAvgPool2d(1)
- self._dropout = nn.Dropout(self._arch_params.dropout_rate)
- self._fc = nn.Linear(out_channels, self._arch_params.num_classes)
- self._swish = nn.functional.silu
- def extract_features(self, inputs):
- """
- Use convolution layer to extract feature.
- Args:
- inputs (tensor): Input tensor.
- Returns:
- Output of the final convolution.
- layer in the efficientnet model.
- """
- # Stem
- x = self._swish(self._bn0(self._conv_stem(inputs)))
- # Blocks
- for idx, block in enumerate(self._blocks):
- drop_connect_rate = self._arch_params.drop_connect_rate
- if drop_connect_rate:
- drop_connect_rate *= float(idx) / len(self._blocks) # scale drop connect_rate
- x = block(x, drop_connect_rate=drop_connect_rate)
- # Head
- x = self._swish(self._bn1(self._conv_head(x)))
- return x
- def forward(self, inputs):
- """EfficientNet's forward function.
- Calls extract_features to extract features, applies final linear layer, and returns logits.
- Args:
- inputs (tensor): Input tensor.
- Returns:
- Output of this model after processing.
- """
- bs = inputs.size(0)
- # Convolution layers
- x = self.extract_features(inputs)
- # Pooling and final linear layer, not needed for backbone mode
- if not self.backbone_mode:
- x = self._avg_pooling(x)
- x = x.view(bs, -1)
- x = self._dropout(x)
- x = self._fc(x)
- return x
- def replace_head(self, new_num_classes=None, new_head=None):
- if new_num_classes is None and new_head is None:
- raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
- if new_head is not None:
- self._fc = new_head
- else:
- self._fc = nn.Linear(self._fc.in_features, new_num_classes)
- def load_state_dict(self, state_dict, strict=True):
- """
- load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone
- :param state_dict: The state_dict to load
- :param strict: strict loading (see super() docs)
- """
- pretrained_model_weights_dict = state_dict.copy()
- if self.backbone_mode:
- # FIRST LET'S POP THE LAST TWO LAYERS - NO NEED TO LOAD THEIR VALUES SINCE THEY ARE IRRELEVANT AS A BACKBONE
- pretrained_model_weights_dict.popitem()
- pretrained_model_weights_dict.popitem()
- pretrained_backbone_weights_dict = OrderedDict()
- for layer_name, weights in pretrained_model_weights_dict.items():
- # GET THE LAYER NAME WITHOUT THE 'module.' PREFIX
- name_without_module_prefix = layer_name.split('module.')[1]
- # MAKE SURE THESE ARE NOT THE FINAL LAYERS
- pretrained_backbone_weights_dict[name_without_module_prefix] = weights
- pretrained_model_weights_dict = pretrained_backbone_weights_dict
- # RETURNING THE UNMODIFIED/MODIFIED STATE DICT DEPENDING ON THE backbone_mode VALUE
- super().load_state_dict(pretrained_model_weights_dict, strict)
- def get_efficientnet_params(width: float, depth: float, res: float, dropout: float, arch_params: HpmStruct):
- print(f"\nNOTICE: \nachieving EfficientNet\'s reported accuracy requires specific image resolution."
- f"\nPlease verify image size is {res}x{res} for this specific EfficientNet configuration\n")
- # Blocks args for the whole model(efficientnet-EfficientNetB0 by default)
- # It will be modified in the construction of EfficientNet Class according to model
- blocks_args = BlockDecoder.decode(['r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
- 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
- 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
- 'r1_k3_s11_e6_i192_o320_se0.25', ])
- # Default values
- arch_params_new = HpmStruct(**{"width_coefficient": width, "depth_coefficient": depth, "image_size": res,
- "dropout_rate": dropout, "num_classes": arch_params.num_classes,
- "batch_norm_momentum": 0.99, "batch_norm_epsilon": 1e-3, "drop_connect_rate": 0.2,
- "depth_divisor": 8, "min_depth": None, "backbone_mode": False})
- # Update arch_params
- arch_params_new.override(**arch_params.to_dict())
- return blocks_args, arch_params_new
- class EfficientNetB0(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.0, depth=1.0, res=224, dropout=0.2, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB1(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.0, depth=1.1, res=240, dropout=0.2, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB2(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.1, depth=1.2, res=260, dropout=0.3, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB3(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.2, depth=1.4, res=300, dropout=0.3, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB4(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.4, depth=1.8, res=380, dropout=0.4, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB5(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.6, depth=2.2, res=456, dropout=0.4, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB6(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=1.8, depth=2.6, res=528, dropout=0.5, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB7(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=2.0, depth=3.1, res=600, dropout=0.5, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetB8(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=2.2, depth=3.6, res=672, dropout=0.5, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class EfficientNetL2(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=4.3, depth=5.3, res=800, dropout=0.5, arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
- class CustomizedEfficientnet(EfficientNet):
- def __init__(self, arch_params):
- blocks_args, arch_params = get_efficientnet_params(width=arch_params.width_coefficient,
- depth=arch_params.depth_coefficient,
- res=arch_params.res,
- dropout=arch_params.dropout_rate,
- arch_params=arch_params)
- super().__init__(blocks_args=blocks_args, arch_params=arch_params)
|