1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
- '''
- Dual Path Networks in PyTorch.
- Credits: https://github.com/kuangliu/pytorch-cifar/blob/master/models/dpn.py
- '''
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from super_gradients.training.models.sg_module import SgModule
- class Bottleneck(nn.Module):
- def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
- super(Bottleneck, self).__init__()
- self.out_planes = out_planes
- self.dense_depth = dense_depth
- self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(in_planes)
- self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
- self.bn2 = nn.BatchNorm2d(in_planes)
- self.conv3 = nn.Conv2d(in_planes, out_planes + dense_depth, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(out_planes + dense_depth)
- self.shortcut = nn.Sequential()
- if first_layer:
- self.shortcut = nn.Sequential(
- nn.Conv2d(last_planes, out_planes + dense_depth, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(out_planes + dense_depth)
- )
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = F.relu(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- x = self.shortcut(x)
- d = self.out_planes
- out = torch.cat([x[:, :d, :, :] + out[:, :d, :, :], x[:, d:, :, :], out[:, d:, :, :]], 1)
- out = F.relu(out)
- return out
- class DPN(SgModule):
- def __init__(self, cfg):
- super(DPN, self).__init__()
- in_planes, out_planes = cfg['in_planes'], cfg['out_planes']
- num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth']
- self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.last_planes = 64
- self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1)
- self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2)
- self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2)
- self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2)
- self.linear = nn.Linear(out_planes[3] + (num_blocks[3] + 1) * dense_depth[3], 10)
- def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- for i, stride in enumerate(strides):
- layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i == 0))
- self.last_planes = out_planes + (i + 2) * dense_depth
- return nn.Sequential(*layers)
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- out = F.avg_pool2d(out, 4)
- out = out.view(out.size(0), -1)
- out = self.linear(out)
- return out
- def DPN26():
- cfg = {
- 'in_planes': (96, 192, 384, 768),
- 'out_planes': (256, 512, 1024, 2048),
- 'num_blocks': (2, 2, 2, 2),
- 'dense_depth': (16, 32, 24, 128)
- }
- return DPN(cfg)
- def DPN92():
- cfg = {
- 'in_planes': (96, 192, 384, 768),
- 'out_planes': (256, 512, 1024, 2048),
- 'num_blocks': (3, 4, 20, 3),
- 'dense_depth': (16, 32, 24, 128)
- }
- return DPN(cfg)
- def test():
- net = DPN92()
- x = torch.randn(1, 3, 32, 32)
- y = net(x)
- print(y)
- # test()
|