1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
- """ BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
- Model from official source: https://github.com/microsoft/unilm/tree/master/beit
- At this point only the 1k fine-tuned classification weights and model configs have been added,
- see original source above for pre-training models and procedure.
- Modifications by / Copyright 2021 Ross Wightman, original copyrights below
- """
- # --------------------------------------------------------
- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
- # Github source: https://github.com/microsoft/unilm/tree/master/beit
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # By Hangbo Bao
- # Based on timm and DeiT code bases
- # https://github.com/rwightman/pytorch-image-models/tree/master/timm
- # https://github.com/facebookresearch/deit/
- # https://github.com/facebookresearch/dino
- # --------------------------------------------------------'
- import math
- from functools import partial
- from typing import Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.utils.checkpoint import checkpoint
- from torch import Tensor
- from super_gradients.training.models.classification_models.vit import PatchEmbed
- from super_gradients.training.utils.regularization_utils import DropPath
- from super_gradients.common.abstractions.abstract_logger import get_logger
- from super_gradients.training.utils import HpmStruct, torch_version_is_greater_or_equal
- from super_gradients.training.models import SgModule
- logger = get_logger(__name__)
- def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
- # Rescale the grid of position embeddings when loading from state_dict. Adapted from
- # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
- ntok_new = posemb_new.shape[1]
- if num_tokens:
- posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
- ntok_new -= num_tokens
- else:
- posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
- gs_old = int(math.sqrt(len(posemb_grid)))
- if not len(gs_new): # backwards compatibility
- gs_new = [int(math.sqrt(ntok_new))] * 2
- assert len(gs_new) >= 2
- posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
- posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode="bicubic", align_corners=False)
- posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
- posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
- return posemb
- def _no_grad_trunc_normal_(tensor, mean, std, a, b):
- # Cut & paste from PyTorch official master until it's in a few official releases - RW
- # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
- # TODO: remove this function on next torch version
- def norm_cdf(x):
- # Computes standard normal cumulative distribution function
- return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
- if (mean < a - 2 * std) or (mean > b + 2 * std):
- logger.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2)
- with torch.no_grad():
- # Values are generated by using a truncated uniform distribution and
- # then using the inverse CDF for the normal distribution.
- # Get upper and lower cdf values
- lower = norm_cdf((a - mean) / std)
- upper = norm_cdf((b - mean) / std)
- # Uniformly fill tensor with values from [l, u], then translate to
- # [2l-1, 2u-1].
- tensor.uniform_(2 * lower - 1, 2 * upper - 1)
- # Use inverse cdf transform for normal distribution to get truncated
- # standard normal
- tensor.erfinv_()
- # Transform to proper mean, std
- tensor.mul_(std * math.sqrt(2.0))
- tensor.add_(mean)
- # Clamp to ensure it's in the proper range
- tensor.clamp_(min=a, max=b)
- return tensor
- def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
- # type: (Tensor, float, float, float, float) -> Tensor
- r"""Fills the input Tensor with values drawn from a truncated
- normal distribution. The values are effectively drawn from the
- normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
- with values outside :math:`[a, b]` redrawn until they are within
- the bounds. The method used for generating the random values works
- best when :math:`a \leq \text{mean} \leq b`.
- Args:
- tensor: an n-dimensional `torch.Tensor`
- mean: the mean of the normal distribution
- std: the standard deviation of the normal distribution
- a: the minimum cutoff value
- b: the maximum cutoff value
- Examples:
- >>> w = torch.empty(3, 5)
- >>> nn.init.trunc_normal_(w)
- """
- return _no_grad_trunc_normal_(tensor, mean, std, a, b)
- class Mlp(nn.Module):
- """MLP as used in Vision Transformer, MLP-Mixer and related networks"""
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.drop1 = nn.Dropout(drop)
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop2 = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop1(x)
- x = self.fc2(x)
- x = self.drop2(x)
- return x
- def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
- num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- window_area = window_size[0] * window_size[1]
- if torch_version_is_greater_or_equal(1, 10):
- # https://github.com/pytorch/pytorch/issues/50276
- coords = torch.stack(torch.meshgrid([torch.arange(window_size[0]), torch.arange(window_size[1])], indexing="ij")) # 2, Wh, Ww
- else:
- coords = torch.stack(torch.meshgrid([torch.arange(window_size[0]), torch.arange(window_size[1])])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = num_relative_distance - 3
- relative_position_index[0:, 0] = num_relative_distance - 2
- relative_position_index[0, 0] = num_relative_distance - 1
- return relative_position_index
- class Attention(nn.Module):
- def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, window_size=None, attn_head_dim=None):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- if attn_head_dim is not None:
- head_dim = attn_head_dim
- all_head_dim = head_dim * self.num_heads
- self.scale = head_dim**-0.5
- self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
- if qkv_bias:
- self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
- self.register_buffer("k_bias", torch.zeros(all_head_dim), persistent=False)
- self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
- else:
- self.q_bias = None
- self.k_bias = None
- self.v_bias = None
- if window_size:
- self.window_size = window_size
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
- self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
- else:
- self.window_size = None
- self.relative_position_bias_table = None
- self.relative_position_index = None
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(all_head_dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- def _get_rel_pos_bias(self):
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
- ) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- return relative_position_bias.unsqueeze(0)
- def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
- B, N, C = x.shape
- qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
- qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
- q = q * self.scale
- attn = q @ k.transpose(-2, -1)
- if self.relative_position_bias_table is not None:
- attn = attn + self._get_rel_pos_bias()
- if shared_rel_pos_bias is not None:
- attn = attn + shared_rel_pos_bias
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
- x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Module):
- def __init__(
- self,
- dim,
- num_heads,
- mlp_ratio=4.0,
- qkv_bias=False,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- init_values=None,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm,
- window_size=None,
- attn_head_dim=None,
- ):
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim
- )
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
- if init_values:
- self.gamma_1 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
- self.gamma_2 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
- else:
- self.gamma_1, self.gamma_2 = None, None
- def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
- if self.gamma_1 is None:
- x = x + self.drop_path(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- else:
- x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
- return x
- class RelativePositionBias(nn.Module):
- def __init__(self, window_size, num_heads):
- super().__init__()
- self.window_size = window_size
- self.window_area = window_size[0] * window_size[1]
- num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
- # trunc_normal_(self.relative_position_bias_table, std=.02)
- self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
- def forward(self):
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_area + 1, self.window_area + 1, -1
- ) # Wh*Ww,Wh*Ww,nH
- return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- class Beit(SgModule):
- """Vision Transformer with support for patch or hybrid CNN input stage"""
- def __init__(
- self,
- image_size=(224, 224),
- patch_size=16,
- in_chans=3,
- num_classes=1000,
- global_pool="avg",
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4.0,
- qkv_bias=True,
- drop_rate=0.0,
- attn_drop_rate=0.0,
- drop_path_rate=0.0,
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
- init_values=None,
- use_abs_pos_emb=True,
- use_rel_pos_bias=False,
- use_shared_rel_pos_bias=False,
- head_init_scale=0.001,
- **kwargs,
- ):
- super().__init__()
- self.num_classes = num_classes
- self.global_pool = global_pool
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
- self.grad_checkpointing = False
- self.patch_embed = PatchEmbed(img_size=image_size, patch_size=patch_size, in_channels=in_chans, hidden_dim=embed_dim)
- num_patches = self.patch_embed.num_patches
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
- self.pos_drop = nn.Dropout(p=drop_rate)
- if use_shared_rel_pos_bias:
- self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads)
- else:
- self.rel_pos_bias = None
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
- self.blocks = nn.ModuleList(
- [
- Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[i],
- norm_layer=norm_layer,
- init_values=init_values,
- window_size=self.patch_embed.grid_size if use_rel_pos_bias else None,
- )
- for i in range(depth)
- ]
- )
- use_fc_norm = self.global_pool == "avg"
- self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
- self.fc_norm = norm_layer(embed_dim) if use_fc_norm else None
- self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
- self.apply(self._init_weights)
- if self.pos_embed is not None:
- trunc_normal_(self.pos_embed, std=0.02)
- trunc_normal_(self.cls_token, std=0.02)
- # trunc_normal_(self.mask_token, std=.02)
- self.fix_init_weight()
- if isinstance(self.head, nn.Linear):
- trunc_normal_(self.head.weight, std=0.02)
- self.head.weight.data.mul_(head_init_scale)
- self.head.bias.data.mul_(head_init_scale)
- def fix_init_weight(self):
- def rescale(param, layer_id):
- param.div_(math.sqrt(2.0 * layer_id))
- for layer_id, layer in enumerate(self.blocks):
- rescale(layer.attn.proj.weight.data, layer_id + 1)
- rescale(layer.mlp.fc2.weight.data, layer_id + 1)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=0.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- @torch.jit.ignore
- def no_weight_decay(self):
- nwd = {"pos_embed", "cls_token"}
- for n, _ in self.named_parameters():
- if "relative_position_bias_table" in n:
- nwd.add(n)
- return nwd
- @torch.jit.ignore
- def set_grad_checkpointing(self, enable=True):
- self.grad_checkpointing = enable
- @torch.jit.ignore
- def group_matcher(self, coarse=False):
- matcher = dict(
- stem=r"^cls_token|pos_embed|patch_embed|rel_pos_bias", # stem and embed
- blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))],
- )
- return matcher
- @torch.jit.ignore
- def get_classifier(self):
- return self.head
- def reset_classifier(self, num_classes, global_pool=None):
- self.num_classes = num_classes
- if global_pool is not None:
- self.global_pool = global_pool
- self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
- def forward_features(self, x):
- x = self.patch_embed(x)
- x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
- if self.pos_embed is not None:
- x = x + self.pos_embed
- x = self.pos_drop(x)
- rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
- for blk in self.blocks:
- if self.grad_checkpointing and not torch.jit.is_scripting():
- x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
- else:
- x = blk(x, shared_rel_pos_bias=rel_pos_bias)
- x = self.norm(x)
- return x
- def forward_head(self, x, pre_logits: bool = False):
- if self.fc_norm is not None:
- x = x[:, 1:].mean(dim=1)
- x = self.fc_norm(x)
- else:
- x = x[:, 0]
- return x if pre_logits else self.head(x)
- def forward(self, x):
- x = self.forward_features(x)
- x = self.forward_head(x)
- return x
- def replace_head(self, new_num_classes=None, new_head=None):
- if new_num_classes is None and new_head is None:
- raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
- if new_head is not None:
- self.head = new_head
- else:
- self.head = nn.Linear(self.head.in_features, new_num_classes)
- class BeitBasePatch16_224(Beit):
- def __init__(self, arch_params: HpmStruct):
- model_kwargs = HpmStruct(
- patch_size=(16, 16), embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1
- )
- model_kwargs.override(**arch_params.to_dict())
- super(BeitBasePatch16_224, self).__init__(**model_kwargs.to_dict())
- class BeitLargePatch16_224(Beit):
- def __init__(self, arch_params: HpmStruct):
- model_kwargs = HpmStruct(
- patch_size=(16, 16),
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- use_abs_pos_emb=False,
- use_rel_pos_bias=True,
- init_values=1e-5,
- )
- model_kwargs.override(**arch_params.to_dict())
- super(BeitLargePatch16_224, self).__init__(**model_kwargs.to_dict())
|