1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
- from super_gradients.training.models import ResNeXt50, ResNeXt101, GoogleNetV1
- from super_gradients.training.models.classification_models import repvgg, efficientnet, densenet, resnet, regnet
- from super_gradients.training.models.classification_models.mobilenetv2 import MobileNetV2Base, MobileNetV2_135, CustomMobileNetV2
- from super_gradients.training.models.classification_models.mobilenetv3 import mobilenetv3_large, mobilenetv3_small, mobilenetv3_custom
- from super_gradients.training.models.classification_models.shufflenetv2 import (
- ShufflenetV2_x0_5,
- ShufflenetV2_x1_0,
- ShufflenetV2_x1_5,
- ShufflenetV2_x2_0,
- CustomizedShuffleNetV2,
- )
- from super_gradients.training.models.classification_models.vit import ViTBase, ViTLarge, ViTHuge
- from super_gradients.training.models.detection_models.csp_darknet53 import CSPDarknet53
- from super_gradients.training.models.detection_models.darknet53 import Darknet53
- from super_gradients.training.models.detection_models.ssd import SSDMobileNetV1, SSDLiteMobileNetV2
- from super_gradients.training.models.detection_models.yolox import YoloX_N, YoloX_T, YoloX_S, YoloX_M, YoloX_L, YoloX_X, CustomYoloX
- from super_gradients.training.models.segmentation_models.ddrnet import DDRNet23, DDRNet23Slim, AnyBackBoneDDRNet23
- from super_gradients.training.models.segmentation_models.regseg import RegSeg48
- from super_gradients.training.models.segmentation_models.shelfnet import ShelfNet18_LW, ShelfNet34_LW, ShelfNet50, ShelfNet503343, ShelfNet101
- from super_gradients.training.models.segmentation_models.stdc import STDC1Classification, STDC2Classification, STDC1Seg, STDC2Seg, STDCSegmentationBase
- from super_gradients.training.models.kd_modules.kd_module import KDModule
- from super_gradients.training.models.classification_models.beit import BeitBasePatch16_224, BeitLargePatch16_224
- from super_gradients.training.models.segmentation_models.ppliteseg import PPLiteSegT, PPLiteSegB
- from super_gradients.training.models.segmentation_models.unet import UNetCustom, UnetClassification
- from super_gradients.common.object_names import Models
- ARCHITECTURES = {
- Models.RESNET18: resnet.ResNet18,
- Models.RESNET34: resnet.ResNet34,
- Models.RESNET50_3343: resnet.ResNet50_3343,
- Models.RESNET50: resnet.ResNet50,
- Models.RESNET101: resnet.ResNet101,
- Models.RESNET152: resnet.ResNet152,
- Models.RESNET18_CIFAR: resnet.ResNet18Cifar,
- Models.CUSTOM_RESNET: resnet.CustomizedResnet,
- Models.CUSTOM_RESNET50: resnet.CustomizedResnet50,
- Models.CUSTOM_RESNET_CIFAR: resnet.CustomizedResnetCifar,
- Models.CUSTOM_RESNET50_CIFAR: resnet.CustomizedResnet50Cifar,
- Models.MOBILENET_V2: MobileNetV2Base,
- Models.MOBILE_NET_V2_135: MobileNetV2_135,
- Models.CUSTOM_MOBILENET_V2: CustomMobileNetV2,
- Models.MOBILENET_V3_LARGE: mobilenetv3_large,
- Models.MOBILENET_V3_SMALL: mobilenetv3_small,
- Models.MOBILENET_V3_CUSTOM: mobilenetv3_custom,
- Models.CUSTOM_DENSENET: densenet.CustomizedDensnet,
- Models.DENSENET121: densenet.DenseNet121,
- Models.DENSENET161: densenet.DenseNet161,
- Models.DENSENET169: densenet.DenseNet169,
- Models.DENSENET201: densenet.DenseNet201,
- Models.SHELFNET18_LW: ShelfNet18_LW,
- Models.SHELFNET34_LW: ShelfNet34_LW,
- Models.SHELFNET50_3343: ShelfNet503343,
- Models.SHELFNET50: ShelfNet50,
- Models.SHELFNET101: ShelfNet101,
- Models.SHUFFLENET_V2_X0_5: ShufflenetV2_x0_5,
- Models.SHUFFLENET_V2_X1_0: ShufflenetV2_x1_0,
- Models.SHUFFLENET_V2_X1_5: ShufflenetV2_x1_5,
- Models.SHUFFLENET_V2_X2_0: ShufflenetV2_x2_0,
- Models.SHUFFLENET_V2_CUSTOM5: CustomizedShuffleNetV2,
- Models.DARKNET53: Darknet53,
- Models.CSP_DARKNET53: CSPDarknet53,
- Models.RESNEXT50: ResNeXt50,
- Models.RESNEXT101: ResNeXt101,
- Models.GOOGLENET_V1: GoogleNetV1,
- Models.EFFICIENTNET_B0: efficientnet.EfficientNetB0,
- Models.EFFICIENTNET_B1: efficientnet.EfficientNetB1,
- Models.EFFICIENTNET_B2: efficientnet.EfficientNetB2,
- Models.EFFICIENTNET_B3: efficientnet.EfficientNetB3,
- Models.EFFICIENTNET_B4: efficientnet.EfficientNetB4,
- Models.EFFICIENTNET_B5: efficientnet.EfficientNetB5,
- Models.EFFICIENTNET_B6: efficientnet.EfficientNetB6,
- Models.EFFICIENTNET_B7: efficientnet.EfficientNetB7,
- Models.EFFICIENTNET_B8: efficientnet.EfficientNetB8,
- Models.EFFICIENTNET_L2: efficientnet.EfficientNetL2,
- Models.CUSTOMIZEDEFFICIENTNET: efficientnet.CustomizedEfficientnet,
- Models.REGNETY200: regnet.RegNetY200,
- Models.REGNETY400: regnet.RegNetY400,
- Models.REGNETY600: regnet.RegNetY600,
- Models.REGNETY800: regnet.RegNetY800,
- Models.CUSTOM_REGNET: regnet.CustomRegNet,
- Models.NAS_REGNET: regnet.NASRegNet,
- Models.YOLOX_N: YoloX_N,
- Models.YOLOX_T: YoloX_T,
- Models.YOLOX_S: YoloX_S,
- Models.YOLOX_M: YoloX_M,
- Models.YOLOX_L: YoloX_L,
- Models.YOLOX_X: YoloX_X,
- Models.CUSTOM_YOLO_X: CustomYoloX,
- Models.SSD_MOBILENET_V1: SSDMobileNetV1,
- Models.SSD_LITE_MOBILENET_V2: SSDLiteMobileNetV2,
- Models.REPVGG_A0: repvgg.RepVggA0,
- Models.REPVGG_A1: repvgg.RepVggA1,
- Models.REPVGG_A2: repvgg.RepVggA2,
- Models.REPVGG_B0: repvgg.RepVggB0,
- Models.REPVGG_B1: repvgg.RepVggB1,
- Models.REPVGG_B2: repvgg.RepVggB2,
- Models.REPVGG_B3: repvgg.RepVggB3,
- Models.REPVGG_D2SE: repvgg.RepVggD2SE,
- Models.REPVGG_CUSTOM: repvgg.RepVggCustom,
- Models.DDRNET_23: DDRNet23,
- Models.DDRNET_23_SLIM: DDRNet23Slim,
- Models.CUSTOM_DDRNET_23: AnyBackBoneDDRNet23,
- Models.STDC1_CLASSIFICATION: STDC1Classification,
- Models.STDC2_CLASSIFICATION: STDC2Classification,
- Models.STDC1_SEG: STDC1Seg,
- Models.STDC1_SEG50: STDC1Seg,
- Models.STDC1_SEG75: STDC1Seg,
- Models.STDC2_SEG: STDC2Seg,
- Models.STDC2_SEG50: STDC2Seg,
- Models.STDC2_SEG75: STDC2Seg,
- Models.CUSTOM_STDC: STDCSegmentationBase,
- Models.REGSEG48: RegSeg48,
- Models.KD_MODULE: KDModule,
- Models.VIT_BASE: ViTBase,
- Models.VIT_LARGE: ViTLarge,
- Models.VIT_HUGE: ViTHuge,
- Models.BEIT_BASE_PATCH16_224: BeitBasePatch16_224,
- Models.BEIT_LARGE_PATCH16_224: BeitLargePatch16_224,
- Models.PP_LITE_T_SEG: PPLiteSegT,
- Models.PP_LITE_T_SEG50: PPLiteSegT,
- Models.PP_LITE_T_SEG75: PPLiteSegT,
- Models.PP_LITE_B_SEG: PPLiteSegB,
- Models.PP_LITE_B_SEG50: PPLiteSegB,
- Models.PP_LITE_B_SEG75: PPLiteSegB,
- Models.CUSTOM_ANYNET: regnet.CustomAnyNet,
- Models.UNET_CUSTOM: UNetCustom,
- Models.UNET_CUSTOM_CLS: UnetClassification,
- }
- KD_ARCHITECTURES = {Models.KD_MODULE: KDModule}
|