1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.datasets.detection_datasets.coco_detection — SuperGradients 3.0.3 documentation</title>
- <link rel="stylesheet" href="../../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../../_static/graphviz.css" type="text/css" />
- <link rel="stylesheet" href="../../../../../_static/custom.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../../" id="documentation_options" src="../../../../../_static/documentation_options.js"></script>
- <script src="../../../../../_static/jquery.js"></script>
- <script src="../../../../../_static/underscore.js"></script>
- <script src="../../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
- <script src="../../../../../_static/doctools.js"></script>
- <script src="../../../../../_static/sphinx_highlight.js"></script>
- <script src="../../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption" role="heading"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html">Version 3 is out! Notebooks have been updated!</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#build-with-supergradients">Build with SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#quick-installation">Quick Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#what-s-new">What’s New</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#coming-soon">Coming soon</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#table-of-content">Table of Content</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#getting-started">Getting Started</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#advanced-features">Advanced Features</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#installation-methods">Installation Methods</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#implemented-model-architectures">Implemented Model Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#documentation">Documentation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#contributing">Contributing</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#citation">Citation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#community">Community</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#license">License</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../welcome.html#deci-platform">Deci Platform</a></li>
- </ul>
- <p class="caption" role="heading"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.datasets.detection_datasets.coco_detection</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.datasets.detection_datasets.coco_detection</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">os</span>
- <span class="kn">import</span> <span class="nn">cv2</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">from</span> <span class="nn">pycocotools.coco</span> <span class="kn">import</span> <span class="n">COCO</span>
- <span class="kn">from</span> <span class="nn">super_gradients.common.abstractions.abstract_logger</span> <span class="kn">import</span> <span class="n">get_logger</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.datasets.detection_datasets.detection_dataset</span> <span class="kn">import</span> <span class="n">DetectionDataset</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">DetectionTargetsFormat</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.datasets.datasets_conf</span> <span class="kn">import</span> <span class="n">COCO_DETECTION_CLASSES_LIST</span>
- <span class="n">logger</span> <span class="o">=</span> <span class="n">get_logger</span><span class="p">(</span><span class="vm">__name__</span><span class="p">)</span>
- <div class="viewcode-block" id="COCODetectionDataset"><a class="viewcode-back" href="../../../../../super_gradients.training.html#super_gradients.training.datasets.COCODetectionDataset">[docs]</a><span class="k">class</span> <span class="nc">COCODetectionDataset</span><span class="p">(</span><span class="n">DetectionDataset</span><span class="p">):</span>
- <span class="sd">"""Dataset for COCO object detection."""</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
- <span class="bp">self</span><span class="p">,</span>
- <span class="n">json_file</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"instances_train2017.json"</span><span class="p">,</span>
- <span class="n">subdir</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"images/train2017"</span><span class="p">,</span>
- <span class="n">tight_box_rotation</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
- <span class="n">with_crowd</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
- <span class="o">*</span><span class="n">args</span><span class="p">,</span>
- <span class="o">**</span><span class="n">kwargs</span><span class="p">,</span>
- <span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param json_file: Name of the coco json file, that resides in data_dir/annotations/json_file.</span>
- <span class="sd"> :param subdir: Sub directory of data_dir containing the data.</span>
- <span class="sd"> :param tight_box_rotation: bool, whether to use of segmentation maps convex hull as target_seg</span>
- <span class="sd"> (check get_sample docs).</span>
- <span class="sd"> :param with_crowd: Add the crowd groundtruths to __getitem__</span>
- <span class="sd"> kwargs:</span>
- <span class="sd"> all_classes_list: all classes list, default is COCO_DETECTION_CLASSES_LIST.</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subdir</span> <span class="o">=</span> <span class="n">subdir</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">json_file</span> <span class="o">=</span> <span class="n">json_file</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">tight_box_rotation</span> <span class="o">=</span> <span class="n">tight_box_rotation</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">with_crowd</span> <span class="o">=</span> <span class="n">with_crowd</span>
- <span class="n">target_fields</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"target"</span><span class="p">,</span> <span class="s2">"crowd_target"</span><span class="p">]</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">with_crowd</span> <span class="k">else</span> <span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
- <span class="n">kwargs</span><span class="p">[</span><span class="s2">"target_fields"</span><span class="p">]</span> <span class="o">=</span> <span class="n">target_fields</span>
- <span class="n">kwargs</span><span class="p">[</span><span class="s2">"output_fields"</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"image"</span><span class="p">,</span> <span class="o">*</span><span class="n">target_fields</span><span class="p">]</span>
- <span class="n">kwargs</span><span class="p">[</span><span class="s2">"original_target_format"</span><span class="p">]</span> <span class="o">=</span> <span class="n">DetectionTargetsFormat</span><span class="o">.</span><span class="n">XYXY_LABEL</span>
- <span class="n">kwargs</span><span class="p">[</span><span class="s2">"all_classes_list"</span><span class="p">]</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"all_classes_list"</span><span class="p">)</span> <span class="ow">or</span> <span class="n">COCO_DETECTION_CLASSES_LIST</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_setup_data_source</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
- <span class="sd">"""Initialize img_and_target_path_list and warn if label file is missing</span>
- <span class="sd"> :return: List of tuples made of (img_path,target_path)</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">coco</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_init_coco</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">class_ids</span> <span class="o">=</span> <span class="nb">sorted</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">getCatIds</span><span class="p">())</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">classes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">([</span><span class="n">category</span><span class="p">[</span><span class="s2">"name"</span><span class="p">]</span> <span class="k">for</span> <span class="n">category</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">loadCats</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">class_ids</span><span class="p">)])</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sample_id_to_coco_id</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">getImgIds</span><span class="p">()</span>
- <span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sample_id_to_coco_id</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_init_coco</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">COCO</span><span class="p">:</span>
- <span class="n">annotation_file_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">data_dir</span><span class="p">,</span> <span class="s2">"annotations"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">json_file</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">annotation_file_path</span><span class="p">):</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Could not find annotation file under "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">annotation_file_path</span><span class="p">))</span>
- <span class="n">coco</span> <span class="o">=</span> <span class="n">COCO</span><span class="p">(</span><span class="n">annotation_file_path</span><span class="p">)</span>
- <span class="n">remove_useless_info</span><span class="p">(</span><span class="n">coco</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tight_box_rotation</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">coco</span>
- <span class="k">def</span> <span class="nf">_load_annotation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample_id</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">dict</span><span class="p">:</span>
- <span class="sd">"""</span>
- <span class="sd"> Load relevant information of a specific image.</span>
- <span class="sd"> :param sample_id: Sample_id in the dataset</span>
- <span class="sd"> :return target: Target Bboxes (detection) in XYXY_LABEL format</span>
- <span class="sd"> :return crowd_target: Crowd target Bboxes (detection) in XYXY_LABEL format</span>
- <span class="sd"> :return target_segmentation: Segmentation</span>
- <span class="sd"> :return initial_img_shape: Image (height, width)</span>
- <span class="sd"> :return resized_img_shape: Resides image (height, width)</span>
- <span class="sd"> :return img_path: Path to the associated image</span>
- <span class="sd"> """</span>
- <span class="n">img_id</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sample_id_to_coco_id</span><span class="p">[</span><span class="n">sample_id</span><span class="p">]</span>
- <span class="n">img_metadata</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">loadImgs</span><span class="p">(</span><span class="n">img_id</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">width</span> <span class="o">=</span> <span class="n">img_metadata</span><span class="p">[</span><span class="s2">"width"</span><span class="p">]</span>
- <span class="n">height</span> <span class="o">=</span> <span class="n">img_metadata</span><span class="p">[</span><span class="s2">"height"</span><span class="p">]</span>
- <span class="n">img_annotation_ids</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">getAnnIds</span><span class="p">(</span><span class="n">imgIds</span><span class="o">=</span><span class="p">[</span><span class="nb">int</span><span class="p">(</span><span class="n">img_id</span><span class="p">)])</span>
- <span class="n">img_annotations</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">coco</span><span class="o">.</span><span class="n">loadAnns</span><span class="p">(</span><span class="n">img_annotation_ids</span><span class="p">)</span>
- <span class="n">cleaned_annotations</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">annotation</span> <span class="ow">in</span> <span class="n">img_annotations</span><span class="p">:</span>
- <span class="n">x1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"bbox"</span><span class="p">][</span><span class="mi">0</span><span class="p">]))</span>
- <span class="n">y1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"bbox"</span><span class="p">][</span><span class="mi">1</span><span class="p">]))</span>
- <span class="n">x2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">min</span><span class="p">((</span><span class="n">width</span><span class="p">,</span> <span class="n">x1</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"bbox"</span><span class="p">][</span><span class="mi">2</span><span class="p">]))))</span>
- <span class="n">y2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">min</span><span class="p">((</span><span class="n">height</span><span class="p">,</span> <span class="n">y1</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"bbox"</span><span class="p">][</span><span class="mi">3</span><span class="p">]))))</span>
- <span class="k">if</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"area"</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">x2</span> <span class="o">>=</span> <span class="n">x1</span> <span class="ow">and</span> <span class="n">y2</span> <span class="o">>=</span> <span class="n">y1</span><span class="p">:</span>
- <span class="n">annotation</span><span class="p">[</span><span class="s2">"clean_bbox"</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="n">x1</span><span class="p">,</span> <span class="n">y1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="n">y2</span><span class="p">]</span>
- <span class="n">cleaned_annotations</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">annotation</span><span class="p">)</span>
- <span class="n">non_crowd_annotations</span> <span class="o">=</span> <span class="p">[</span><span class="n">annotation</span> <span class="k">for</span> <span class="n">annotation</span> <span class="ow">in</span> <span class="n">cleaned_annotations</span> <span class="k">if</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"iscrowd"</span><span class="p">]</span> <span class="o">==</span> <span class="mi">0</span><span class="p">]</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">non_crowd_annotations</span><span class="p">),</span> <span class="mi">5</span><span class="p">))</span>
- <span class="n">num_seg_values</span> <span class="o">=</span> <span class="mi">98</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tight_box_rotation</span> <span class="k">else</span> <span class="mi">0</span>
- <span class="n">target_segmentation</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">non_crowd_annotations</span><span class="p">),</span> <span class="n">num_seg_values</span><span class="p">))</span>
- <span class="n">target_segmentation</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">ix</span><span class="p">,</span> <span class="n">annotation</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">non_crowd_annotations</span><span class="p">):</span>
- <span class="bp">cls</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">class_ids</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">annotation</span><span class="p">[</span><span class="s2">"category_id"</span><span class="p">])</span>
- <span class="n">target</span><span class="p">[</span><span class="n">ix</span><span class="p">,</span> <span class="mi">0</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"clean_bbox"</span><span class="p">]</span>
- <span class="n">target</span><span class="p">[</span><span class="n">ix</span><span class="p">,</span> <span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="bp">cls</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tight_box_rotation</span><span class="p">:</span>
- <span class="n">seg_points</span> <span class="o">=</span> <span class="p">[</span><span class="n">j</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">annotation</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"segmentation"</span><span class="p">,</span> <span class="p">[])</span> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">i</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">seg_points</span><span class="p">:</span>
- <span class="n">seg_points_c</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">seg_points</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int</span><span class="p">)</span>
- <span class="n">seg_points_convex</span> <span class="o">=</span> <span class="n">cv2</span><span class="o">.</span><span class="n">convexHull</span><span class="p">(</span><span class="n">seg_points_c</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">seg_points_convex</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="n">target_segmentation</span><span class="p">[</span><span class="n">ix</span><span class="p">,</span> <span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">seg_points_convex</span><span class="p">)]</span> <span class="o">=</span> <span class="n">seg_points_convex</span>
- <span class="n">crowd_annotations</span> <span class="o">=</span> <span class="p">[</span><span class="n">annotation</span> <span class="k">for</span> <span class="n">annotation</span> <span class="ow">in</span> <span class="n">cleaned_annotations</span> <span class="k">if</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"iscrowd"</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span>
- <span class="n">crowd_target</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">crowd_annotations</span><span class="p">),</span> <span class="mi">5</span><span class="p">))</span>
- <span class="k">for</span> <span class="n">ix</span><span class="p">,</span> <span class="n">annotation</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">crowd_annotations</span><span class="p">):</span>
- <span class="bp">cls</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">class_ids</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">annotation</span><span class="p">[</span><span class="s2">"category_id"</span><span class="p">])</span>
- <span class="n">crowd_target</span><span class="p">[</span><span class="n">ix</span><span class="p">,</span> <span class="mi">0</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="n">annotation</span><span class="p">[</span><span class="s2">"clean_bbox"</span><span class="p">]</span>
- <span class="n">crowd_target</span><span class="p">[</span><span class="n">ix</span><span class="p">,</span> <span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="bp">cls</span>
- <span class="n">r</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">input_dim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">height</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_dim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">/</span> <span class="n">width</span><span class="p">)</span>
- <span class="n">target</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">*=</span> <span class="n">r</span>
- <span class="n">crowd_target</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">*=</span> <span class="n">r</span>
- <span class="n">target_segmentation</span> <span class="o">*=</span> <span class="n">r</span>
- <span class="n">initial_img_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
- <span class="n">resized_img_shape</span> <span class="o">=</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">height</span> <span class="o">*</span> <span class="n">r</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">width</span> <span class="o">*</span> <span class="n">r</span><span class="p">))</span>
- <span class="n">file_name</span> <span class="o">=</span> <span class="n">img_metadata</span><span class="p">[</span><span class="s2">"file_name"</span><span class="p">]</span> <span class="k">if</span> <span class="s2">"file_name"</span> <span class="ow">in</span> <span class="n">img_metadata</span> <span class="k">else</span> <span class="s2">"</span><span class="si">{:012}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">img_id</span><span class="p">)</span> <span class="o">+</span> <span class="s2">".jpg"</span>
- <span class="n">img_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">data_dir</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">subdir</span><span class="p">,</span> <span class="n">file_name</span><span class="p">)</span>
- <span class="n">img_id</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sample_id_to_coco_id</span><span class="p">[</span><span class="n">sample_id</span><span class="p">]</span>
- <span class="n">annotation</span> <span class="o">=</span> <span class="p">{</span>
- <span class="s2">"target"</span><span class="p">:</span> <span class="n">target</span><span class="p">,</span>
- <span class="s2">"crowd_target"</span><span class="p">:</span> <span class="n">crowd_target</span><span class="p">,</span>
- <span class="s2">"target_segmentation"</span><span class="p">:</span> <span class="n">target_segmentation</span><span class="p">,</span>
- <span class="s2">"initial_img_shape"</span><span class="p">:</span> <span class="n">initial_img_shape</span><span class="p">,</span>
- <span class="s2">"resized_img_shape"</span><span class="p">:</span> <span class="n">resized_img_shape</span><span class="p">,</span>
- <span class="s2">"img_path"</span><span class="p">:</span> <span class="n">img_path</span><span class="p">,</span>
- <span class="s2">"id"</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">img_id</span><span class="p">]),</span>
- <span class="p">}</span>
- <span class="k">return</span> <span class="n">annotation</span></div>
- <span class="k">def</span> <span class="nf">remove_useless_info</span><span class="p">(</span><span class="n">coco</span><span class="p">,</span> <span class="n">use_seg_info</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Remove useless info in coco dataset. COCO object is modified inplace.</span>
- <span class="sd"> This function is mainly used for saving memory (save about 30% mem).</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">coco</span><span class="p">,</span> <span class="n">COCO</span><span class="p">):</span>
- <span class="n">dataset</span> <span class="o">=</span> <span class="n">coco</span><span class="o">.</span><span class="n">dataset</span>
- <span class="n">dataset</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"info"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">dataset</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"licenses"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">img</span> <span class="ow">in</span> <span class="n">dataset</span><span class="p">[</span><span class="s2">"images"</span><span class="p">]:</span>
- <span class="n">img</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"license"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">img</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"coco_url"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">img</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"date_captured"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">img</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"flickr_url"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="k">if</span> <span class="s2">"annotations"</span> <span class="ow">in</span> <span class="n">coco</span><span class="o">.</span><span class="n">dataset</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">use_seg_info</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">anno</span> <span class="ow">in</span> <span class="n">coco</span><span class="o">.</span><span class="n">dataset</span><span class="p">[</span><span class="s2">"annotations"</span><span class="p">]:</span>
- <span class="n">anno</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"segmentation"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|