Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#592 add model names

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-528-add_model_names
@@ -43,6 +43,7 @@ ________________________________________________________________________________
 ### Ready to deploy pre-trained SOTA models
 ### Ready to deploy pre-trained SOTA models
 ```python
 ```python
 # Load model with pretrained weights
 # Load model with pretrained weights
+from super_gradients.training import models
 model = models.get("yolox_s", pretrained_weights="coco")
 model = models.get("yolox_s", pretrained_weights="coco")
 ```
 ```
 #### All Computer Vision Models - Pretrained Checkpoints can be found in the [Model Zoo](http://bit.ly/3EGfKD4)
 #### All Computer Vision Models - Pretrained Checkpoints can be found in the [Model Zoo](http://bit.ly/3EGfKD4)
Discard
@@ -1,26 +1,35 @@
 
 
 ## Computer Vision Models - Pretrained Checkpoints
 ## Computer Vision Models - Pretrained Checkpoints
 
 
+You can load any of our pretrained model in 2 lines of code:
+```python
+from super_gradients.training import models
+model = models.get("yolox_s", pretrained_weights="coco")
+```
+
+All the available models are listed in the column `Model name`.
+
+
 ### Pretrained Classification PyTorch Checkpoints
 ### Pretrained Classification PyTorch Checkpoints
 
 
 
 
-| Model | Dataset |  Resolution |    Top-1    |    Top-5   | Latency (HW)*<sub>T4</sub>  | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub>  | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub>  |
-|------------ | ------ | ---------- |----------- | ----------- | ----------- |---------- |----------- | ----------- | :------: |
-| ViT base | ImageNet21K | 224x224 |  84.15  | - |**4.46ms** |**4.60ms** | **-** * |**-**|**57.22ms** |
-| ViT large | ImageNet21K | 224x224 |  85.64  | - |**12.81ms** |**13.19ms** | **-** * |**-**|**187.22ms** |
-| BEiT | ImageNet21K | 224x224 |  -  | - |**-ms** |**-ms** | **-** * |**-**|**-ms** |
-| EfficientNet B0 | ImageNet | 224x224 |  77.62  | 93.49 |**0.93ms** |**1.38ms** | **-** * |**-**|**3.44ms** |
-| RegNet Y200 | ImageNet  |224x224 |  70.88   | 89.35 |**0.63ms** | **1.08ms** | **2.16ms** |**2.47ms**|**2.06ms** |
-| RegNet Y400  | ImageNet |224x224 |  74.74   | 91.46 |**0.80ms** | **1.25ms** |**2.62ms** |**2.91ms** |**2.87ms** |
-| RegNet Y600  | ImageNet |224x224 |  76.18   | 92.34 |**0.77ms** | **1.22ms** |**2.64ms** |**2.93ms** |**2.39ms** |
-| RegNet Y800  | ImageNet |224x224 |  77.07  |  93.26 |**0.74ms** | **1.19ms** |**2.77ms** |**3.04ms** |**2.81ms** |
-| ResNet 18   | ImageNet  |224x224   |  70.6   |   89.64 |**0.52ms** | **0.95ms** |**2.01ms**|**2.30ms** |**4.56ms** |
-| ResNet 34  | ImageNet  |224x224   |  74.13   |   91.7  |**0.92ms**  |**1.34ms** |**3.57ms**|**3.87ms** | **7.64ms** |
-| ResNet 50  | ImageNet  |224x224   |  81.91  |   93.0  |**1.03ms** | **1.44ms** | **4.78ms**|**5.10ms** |**9.25ms** |
-| MobileNet V3_large-150 epochs | ImageNet  |224x224   |  73.79    |   91.54  |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
-| MobileNet V3_large-300 epochs  | ImageNet  |224x224   |  74.52    |  91.92 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
-| MobileNet V3_small | ImageNet  |224x224   |67.45    |  87.47   |**0.55ms** | **0.96ms** |**2.01ms** *|**2.35ms** |**1.06ms** |
-| MobileNet V2_w1   | ImageNet  |224x224   |  73.08 | 91.1  |**0.46 ms**| **0.89ms** |**1.65ms** *|**1.90ms** | **1.56ms** |
+| Model                         | Model name         | Dataset     | Resolution | Top-1   | Top-5   | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> | Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
+|-------------------------------|--------------------|-------------|------------|---------|---------|----------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------|:-------------------------------:|
+| ViT base                      | vit_base           | ImageNet21K | 224x224    | 84.15   | -       | **4.46ms**                 | **4.60ms**                          | **-** *                                  | **-**                                             |          **57.22ms**            |
+| ViT large                     | vit_large          | ImageNet21K | 224x224    | 85.64   | -       | **12.81ms**                | **13.19ms**                         | **-** *                                  | **-**                                             |          **187.22ms**           |
+| BEiT                          | < NO CHECKPOINT ?> | ImageNet21K | 224x224    | -       | -       | **-ms**                    | **-ms**                             | **-** *                                  | **-**                                             |             **-ms**             |
+| EfficientNet B0               | efficientnet_b0    | ImageNet    | 224x224    | 77.62   | 93.49   | **0.93ms**                 | **1.38ms**                          | **-** *                                  | **-**                                             |           **3.44ms**            |
+| RegNet Y200                   | regnetY200         | ImageNet    | 224x224    | 70.88   | 89.35   | **0.63ms**                 | **1.08ms**                          | **2.16ms**                               | **2.47ms**                                        |           **2.06ms**            |
+| RegNet Y400                   | regnetY400         | ImageNet    | 224x224    | 74.74   | 91.46   | **0.80ms**                 | **1.25ms**                          | **2.62ms**                               | **2.91ms**                                        |           **2.87ms**            |
+| RegNet Y600                   | regnetY600         | ImageNet    | 224x224    | 76.18   | 92.34   | **0.77ms**                 | **1.22ms**                          | **2.64ms**                               | **2.93ms**                                        |           **2.39ms**            |
+| RegNet Y800                   | regnetY800         | ImageNet    | 224x224    | 77.07   | 93.26   | **0.74ms**                 | **1.19ms**                          | **2.77ms**                               | **3.04ms**                                        |           **2.81ms**            |
+| ResNet 18                     | resnet18           | ImageNet    | 224x224    | 70.6    | 89.64   | **0.52ms**                 | **0.95ms**                          | **2.01ms**                               | **2.30ms**                                        |           **4.56ms**            |
+| ResNet 34                     | resnet34           | ImageNet    | 224x224    | 74.13   | 91.7    | **0.92ms**                 | **1.34ms**                          | **3.57ms**                               | **3.87ms**                                        |           **7.64ms**            |
+| ResNet 50                     | resnet50           | ImageNet    | 224x224    | 81.91   | 93.0    | **1.03ms**                 | **1.44ms**                          | **4.78ms**                               | **5.10ms**                                        |           **9.25ms**            |
+| MobileNet V3_large-150 epochs | < WHY KEEP THIS?>  | ImageNet    | 224x224    | 73.79   | 91.54   | **0.67ms**                 | **1.11ms**                          | **2.42ms**                               | **2.71ms**                                        |           **1.76ms**            |
+| MobileNet V3_large-300 epochs | mobilenet_v3_large | ImageNet    | 224x224    | 74.52   | 91.92   | **0.67ms**                 | **1.11ms**                          | **2.42ms**                               | **2.71ms**                                        |           **1.76ms**            |
+| MobileNet V3_small            | mobilenet_v3_small | ImageNet    | 224x224    | 67.45   | 87.47   | **0.55ms**                 | **0.96ms**                          | **2.01ms** *                             | **2.35ms**                                        |           **1.06ms**            |
+| MobileNet V2_w1               | mobilenet_v2 ?     | ImageNet    | 224x224    | 73.08   | 91.1    | **0.46 ms**                | **0.89ms**                          | **1.65ms** *                             | **1.90ms**                                        |           **1.56ms**            |
 > **NOTE:** <br/>
 > **NOTE:** <br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
 > - Latency (Production)** - Production Performance (including IO)
 > - Latency (Production)** - Production Performance (including IO)
@@ -32,16 +41,15 @@
 ### Pretrained Object Detection PyTorch Checkpoints
 ### Pretrained Object Detection PyTorch Checkpoints
 
 
 
 
-| Model | Dataset |  Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub>  | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub>  | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub>  |
-|------------- |------ | ---------- |------ | -------- |------ | ---------- |------ | :------: |
-| SSD lite MobileNet v2 | COCO |320x320 |21.5 |**0.77ms** |**1.40ms**|**5.28ms** |**6.44ms** |**4.13ms**|
-| SSD lite MobileNet v1 | COCO |320x320 |24.3 |**1.55ms** |**2.84ms**|**8.07ms** |**9.14ms** |**22.76ms**|
-| YOLOX nano | COCO |640x640 |26.77|**2.47ms** |**4.09ms**|**11.49ms** |**12.97ms** |**-**|
-| YOLOX tiny | COCO |640x640 |37.18|**3.16ms** |**4.61ms**|**15.23ms** |**19.24ms** |**-**|
-| YOLOX small | COCO |640x640 |40.47 |**3.58ms** |**4.94ms**|**18.88ms** |**22.48ms** |**-**|
-| YOLOX medium| COCO |640x640 |46.4 |**6.40ms** |**7.65ms**|**39.22ms** |**44.5ms** |**-**|
-| YOLOX large | COCO |640x640 |49.25 |**10.07ms** |**11.12ms**|**68.73ms** |**77.01ms** |**-**|
-  
+| Model                 | Model Name              | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> | Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
+|-----------------------|-------------------------|---------|------------|-------------------------|----------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------|:-------------------------------:|
+| SSD lite MobileNet v2 | ssd_lite_mobilenet_v2   | COCO    | 320x320    | 21.5                    | **0.77ms**                 | **1.40ms**                          | **5.28ms**                               | **6.44ms**                                        |            **4.13ms**           |
+| SSD lite MobileNet v1 | ssd_mobilenet_v1        | COCO    | 320x320    | 24.3                    | **1.55ms**                 | **2.84ms**                          | **8.07ms**                               | **9.14ms**                                        |           **22.76ms**           |
+| YOLOX nano            | yolox_n                 | COCO    | 640x640    | 26.77                   | **2.47ms**                 | **4.09ms**                          | **11.49ms**                              | **12.97ms**                                       |              **-**              |
+| YOLOX tiny            | yolox_t                 | COCO    | 640x640    | 37.18                   | **3.16ms**                 | **4.61ms**                          | **15.23ms**                              | **19.24ms**                                       |              **-**              |
+| YOLOX small           | yolox_s                 | COCO    | 640x640    | 40.47                   | **3.58ms**                 | **4.94ms**                          | **18.88ms**                              | **22.48ms**                                       |              **-**              |
+| YOLOX medium          | yolox_m                 | COCO    | 640x640    | 46.4                    | **6.40ms**                 | **7.65ms**                          | **39.22ms**                              | **44.5ms**                                        |              **-**              |
+| YOLOX large           | yolox_l                 | COCO    | 640x640    | 49.25                   | **10.07ms**                | **11.12ms**                         | **68.73ms**                              | **77.01ms**                                       |              **-**              |
 
 
 > **NOTE:** <br/>
 > **NOTE:** <br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
@@ -51,20 +59,20 @@
 
 
 ### Pretrained Semantic Segmentation PyTorch Checkpoints
 ### Pretrained Semantic Segmentation PyTorch Checkpoints
 
 
-| Model | Dataset |  Resolution | mIoU | Latency b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO | Latency (Production)**<sub>Jetson Xavier NX</sub> | 
-|--------------------- |------ | ---------- | ------ | -------- |  ----------|:-------------------------------------------------:|
-| PP-LiteSeg B50 | Cityscapes |512x1024    |76.48 |**4.18ms** |**31.22ms**|**31.69ms**|
-| PP-LiteSeg B75 | Cityscapes |768x1536   |78.52 |**6.84ms** |**33.69ms**|**49.89ms** |
-| PP-LiteSeg T50 | Cityscapes |512x1024    |74.92 |**3.26ms** |**30.33ms**|**26.20ms**  |
-| PP-LiteSeg T75 | Cityscapes |768x1536  |77.56 |**5.20ms** |**32.28ms**|**38.03ms**  |
-| DDRNet 23 slim   | Cityscapes |1024x2048 |78.01 |**5.74ms** |**32.01ms**| **45.18ms**|
-| DDRNet 23   | Cityscapes |1024x2048   |80.26 |**12.74ms** |**39.01ms**|**106.26ms** |
-| STDC 1-Seg50   | Cityscapes | 512x1024 |75.11 |**3.34ms** |**30.12ms**| **27.54ms**|
-| STDC 1-Seg75   | Cityscapes | 768x1536 |77.8  |**5.53ms** |**32.490ms**|**43.88**|
-| STDC 2-Seg50   | Cityscapes | 512x1024 |76.44 |**4.12ms** |**30.94ms**|**32.03ms**  |
-| STDC 2-Seg75   | Cityscapes | 768x1536 |78.93 |**6.95ms** |**33.89ms**|**54.48ms**|
-| RegSeg (exp48)   | Cityscapes | 1024x2048 |78.15 |**12.03ms** |**38.91ms**|**78.20ms**|
-| Larger RegSeg (exp53)   | Cityscapes | 1024x2048 |79.2|**22.00ms** |**48.96ms**|**150.78ms**|
+| Model                 | Model Name        | Dataset    | Resolution | mIoU  | Latency b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO | Latency (Production)**<sub>Jetson Xavier NX</sub> | 
+|-----------------------|-------------------|------------|------------|-------|-------------------------|--------------------------------------|:-------------------------------------------------:|
+| PP-LiteSeg B50        | pp_lite_b_seg50   | Cityscapes | 512x1024   | 76.48 | **4.18ms**              | **31.22ms**                          |                    **31.69ms**                    |
+| PP-LiteSeg B75        | pp_lite_b_seg75   | Cityscapes | 768x1536   | 78.52 | **6.84ms**              | **33.69ms**                          |                    **49.89ms**                    |
+| PP-LiteSeg T50        | pp_lite_t_seg50   | Cityscapes | 512x1024   | 74.92 | **3.26ms**              | **30.33ms**                          |                    **26.20ms**                    |
+| PP-LiteSeg T75        | pp_lite_t_seg75   | Cityscapes | 768x1536   | 77.56 | **5.20ms**              | **32.28ms**                          |                    **38.03ms**                    |
+| DDRNet 23 slim        | ddrnet_23_slim    | Cityscapes | 1024x2048  | 78.01 | **5.74ms**              | **32.01ms**                          |                    **45.18ms**                    |
+| DDRNet 23             | ddrnet_23         | Cityscapes | 1024x2048  | 80.26 | **12.74ms**             | **39.01ms**                          |                   **106.26ms**                    |
+| STDC 1-Seg50          | stdc1_seg50       | Cityscapes | 512x1024   | 75.11 | **3.34ms**              | **30.12ms**                          |                    **27.54ms**                    |
+| STDC 1-Seg75          | stdc1_seg75       | Cityscapes | 768x1536   | 77.8  | **5.53ms**              | **32.490ms**                         |                     **43.88**                     |
+| STDC 2-Seg50          | stdc2_seg50       | Cityscapes | 512x1024   | 76.44 | **4.12ms**              | **30.94ms**                          |                    **32.03ms**                    |
+| STDC 2-Seg75          | stdc2_seg75       | Cityscapes | 768x1536   | 78.93 | **6.95ms**              | **33.89ms**                          |                   **54.48ms**                     |
+| RegSeg (exp48)        | regseg48          | Cityscapes | 1024x2048  | 78.15 | **12.03ms**             | **38.91ms**                          |                    **78.20ms**                    |
+| Larger RegSeg (exp53) | <No Checkpoint ?> | Cityscapes | 1024x2048  | 79.2  | **22.00ms**             | **48.96ms**                          |                   **150.78ms**                    |
 
 
 > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
 > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
 
 
Discard