|
@@ -1,68 +1,6 @@
|
|
defaults:
|
|
defaults:
|
|
- coco_detection_dataset_params
|
|
- coco_detection_dataset_params
|
|
|
|
|
|
-cache_dir: # path to a directory that will be used for caching (with numpy.memmap).
|
|
|
|
-cache_train_images: False
|
|
|
|
-cache_val_images: False
|
|
|
|
-
|
|
|
|
-batch_size: 32
|
|
|
|
-val_batch_size: 16
|
|
|
|
-train_image_size: 320
|
|
|
|
-val_image_size: 320
|
|
|
|
-train_input_dim:
|
|
|
|
- - ${dataset_params.train_image_size}
|
|
|
|
- - ${dataset_params.train_image_size}
|
|
|
|
-val_input_dim:
|
|
|
|
- - ${dataset_params.val_image_size}
|
|
|
|
- - ${dataset_params.val_image_size}
|
|
|
|
-
|
|
|
|
-targets_format:
|
|
|
|
- _target_: super_gradients.training.utils.detection_utils.DetectionTargetsFormat
|
|
|
|
- value: LABEL_NORMALIZED_CXCYWH
|
|
|
|
-
|
|
|
|
-train_transforms:
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionRandomAffine
|
|
|
|
- degrees: 0. # rotation degrees, randomly sampled from [-degrees, degrees]
|
|
|
|
- translate: 0.1 # image translation fraction
|
|
|
|
- scales: [0.5, 1.5] # random rescale range (keeps size by padding/cropping) after mosaic transform.
|
|
|
|
- shear: 0. # shear degrees, randomly sampled from [-degrees, degrees]
|
|
|
|
- target_size: ${dataset_params.train_input_dim}
|
|
|
|
- filter_box_candidates: True # whether to filter out transformed bboxes by edge size, area ratio, and aspect ratio.
|
|
|
|
- wh_thr: 2 # edge size threshold when filter_box_candidates = True (pixels)
|
|
|
|
- area_thr: 0.1 # threshold for area ratio between original image and the transformed one, when when filter_box_candidates = True
|
|
|
|
- ar_thr: 20 # aspect ratio threshold when filter_box_candidates = True
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionHSV
|
|
|
|
- prob: 1.0 # probability to apply HSV transform
|
|
|
|
- hgain: 5 # HSV transform hue gain (randomly sampled from [-hgain, hgain])
|
|
|
|
- sgain: 30 # HSV transform saturation gain (randomly sampled from [-sgain, sgain])
|
|
|
|
- vgain: 30 # HSV transform value gain (randomly sampled from [-vgain, vgain])
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionHorizontalFlip
|
|
|
|
- prob: 0.5 # probability to apply horizontal flip
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionPaddedRescale
|
|
|
|
- input_dim: ${dataset_params.train_input_dim}
|
|
|
|
- max_targets: 120
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionTargetsFormatTransform
|
|
|
|
- output_format: ${dataset_params.targets_format}
|
|
|
|
-
|
|
|
|
-val_transforms:
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionPaddedRescale
|
|
|
|
- input_dim: ${dataset_params.val_input_dim}
|
|
|
|
- - _target_: super_gradients.training.transforms.transforms.DetectionTargetsFormatTransform
|
|
|
|
- max_targets: 50
|
|
|
|
- output_format: ${dataset_params.targets_format}
|
|
|
|
-
|
|
|
|
-val_collate_fn: # collate function for valset
|
|
|
|
- _target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
|
|
|
|
-train_collate_fn: # collate function for trainset
|
|
|
|
- _target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
|
|
|
|
-
|
|
|
|
-class_inclusion_list: # If not None,every class not included will be ignored.
|
|
|
|
-train_max_num_samples: # If not None, only specified number of samples will be loaded in train dataset
|
|
|
|
-val_max_num_samples: # If not None, only specified number of samples will be loaded in test dataset
|
|
|
|
-with_crowd: False # whether to return "crowd" labels in validation
|
|
|
|
-
|
|
|
|
-# TODO: REMOVE ABOVE, HERE FOR COMPATIBILITY UNTIL WE REMOVE DATASET_INTERFACE
|
|
|
|
-
|
|
|
|
train_dataset_params:
|
|
train_dataset_params:
|
|
data_dir: /data/coco # root path to coco data
|
|
data_dir: /data/coco # root path to coco data
|
|
subdir: images/train2017 # sub directory path of data_dir containing the train data.
|
|
subdir: images/train2017 # sub directory path of data_dir containing the train data.
|
|
@@ -144,4 +82,4 @@ val_dataloader_params:
|
|
collate_fn: # collate function for trainset
|
|
collate_fn: # collate function for trainset
|
|
_target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
|
|
_target_: super_gradients.training.utils.detection_utils.DetectionCollateFN
|
|
|
|
|
|
-_convert_: all
|
|
|
|
|
|
+_convert_: all
|